On the phase-integral method for the radial Dirac equation

2009 ◽  
Vol 42 (39) ◽  
pp. 395203 ◽  
Author(s):  
Giampiero Esposito ◽  
Pietro Santorelli
1979 ◽  
Vol 12 (2) ◽  
pp. 171-186 ◽  
Author(s):  
G Drukarev ◽  
N Froman ◽  
P O Froman

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
ZiLong Zhao ◽  
ZhengWen Long ◽  
MengYao Zhang

The generalized Dirac oscillator as one of the exact solvable models in quantum mechanics was introduced in 2+1-dimensional world in this paper. What is more, the general expressions of the exact solutions for these models with the inverse cubic, quartic, quintic, and sixth power potentials in radial Dirac equation were further given by means of the Bethe ansatz method. And finally, the corresponding exact solutions in this paper were further discussed.


1991 ◽  
Vol 44 (6) ◽  
pp. 585
Author(s):  
TJ Allen ◽  
LJ Tassie

In both spherical and cylindrical coordinates, the radial Dirac equation can be written in the form of a Schrodinger equation with an effective potential. It is shown that the difficulties at r -+ 0 for the Dirac equation in the field of a point charge for Z > 137 are the same as those for the Schrodinger equation with a l/r2 potential. The effective potential is used to show that similar difficulties do not arise for the field of a line charge, so allowing the consideration of the motion of electrons in the field of a charged superconducting cosmic string without considering the internal structure of the string.


Sign in / Sign up

Export Citation Format

Share Document