bethe ansatz
Recently Published Documents


TOTAL DOCUMENTS

1028
(FIVE YEARS 98)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Peihe Yang ◽  
Yunfeng Jiang ◽  
Shota Komatsu ◽  
Jun-Bao Wu

Abstract We develop an integrability-based framework to compute structure constants of two sub-determinant operators and a single-trace non-BPS operator in ABJM theory in the planar limit. In this first paper, we study them at weak coupling using a relation to an integrable spin chain. We first develop a nested Bethe ansatz for an alternating SU(4) spin chain that describes single-trace operators made out of scalar fields. We then apply it to the computation of the structure constants and show that they are given by overlaps between a Bethe eigenstate and a matrix product state. We conjecture that the determinant operator corresponds to an integrable matrix product state and present a closed-form expression for the overlap, which resembles the so-called Gaudin determinant. We also provide evidence for the integrability of general sub-determinant operators. The techniques developed in this paper can be applied to other quantities in ABJM theory including three-point functions of single-trace operators.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Lucía Córdova ◽  
Stefano Negro ◽  
Fidel I. Schaposnik Massolo

Abstract We analyze the Thermodynamic Bethe Ansatz (TBA) for various integrable S-matrices in the context of generalized T$$ \overline{\mathrm{T}} $$ T ¯ deformations. We focus on the sinh-Gordon model and its elliptic deformation in both its fermionic and bosonic realizations. We confirm that the determining factor for a turning point in the TBA, interpreted as a finite Hagedorn temperature, is the difference between the number of bound states and resonances in the theory. Implementing the numerical pseudo-arclength continuation method, we are able to follow the solutions to the TBA equations past the turning point all the way to the ultraviolet regime. We find that for any number k of resonances the pair of complex conjugate solutions below the turning point is such that the effective central charge is minimized. As k → ∞ the UV effective central charge goes to zero as in the elliptic sinh-Gordon model. Finally we uncover a new family of UV complete integrable theories defined by the bosonic counterparts of the S-matrices describing the Φ1,3 integrable deformation of non-unitary minimal models $$ \mathcal{M} $$ M 2,2n+3.


Author(s):  
Nikolai Kitanine ◽  
◽  
Giridhar Kulkarni ◽  
◽  
◽  
...  

In this article we study the thermodynamic limit of the form factors of the XXX Heisenberg spin chain using the algebraic Bethe ansatz approach. Our main goal is to express the form factors for the low-lying excited states as determinants of matrices that remain finite dimensional in the thermodynamic limit. We show how to treat all types of the complex roots of the Bethe equations within this framework. In particular we demonstrate that the Gaudin determinant for the higher level Bethe equations arises naturally from the algebraic Bethe ansatz.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Andrea Cavaglià ◽  
Nikolay Gromov ◽  
Bogdan Stefański ◽  
Alessandro Torrielli

Abstract We conjecture the Quantum Spectral Curve equations for string theory on AdS3× S3× T4 with RR charge and its CFT2 dual. We show that in the large-length regime, under additional mild assumptions, the QSC reproduces the Asymptotic Bethe Ansatz equations for the massive sector of the theory, including the exact dressing phases found in the literature. The structure of the QSC shares many similarities with the previously known AdS5 and AdS4 cases, but contains a critical new feature — the branch cuts are no longer quadratic. Nevertheless, we show that much of the QSC analysis can be suitably generalised producing a self-consistent system of equations. While further tests are necessary, particularly outside the massive sector, the simplicity and self-consistency of our construction suggests the completeness of the QSC.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Fiona K. Seibold ◽  
Alessandro Sfondrini

Abstract Two distinct η-deformations of strings on AdS5×S5 can be defined; both amount to integrable quantum deformations of the string non-linear sigma model, but only one is itself a superstring background. In this paper we compare their conjectured all-loop worldsheet S matrices and derive the corresponding Bethe equations. We find that, while the S matrices are apparently different, they lead to the same Bethe equations. Moreover, in either case the eigenvalues of the transfer matrix, which encode the conserved charges of each system, also coincide. We conclude that the integrable structure underlying the two constructions is essentially the same. Finally, we write down the full Bethe-Yang equations describing the asymptotic spectrum of the superstring background.


PRX Quantum ◽  
2021 ◽  
Vol 2 (4) ◽  
Author(s):  
John S. Van Dyke ◽  
George S. Barron ◽  
Nicholas J. Mayhall ◽  
Edwin Barnes ◽  
Sophia E. Economou

2021 ◽  
Vol 104 (19) ◽  
Author(s):  
Xin Zhang ◽  
Andreas Klümper ◽  
Vladislav Popkov
Keyword(s):  

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Ofer Aharony ◽  
Francesco Benini ◽  
Ohad Mamroud ◽  
Paolo Milan

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Katsushi Ito ◽  
Takayasu Kondo ◽  
Kohei Kuroda ◽  
Hongfei Shu

Abstract We study the WKB periods for the (r + 1)-th order ordinary differential equation (ODE) which is obtained by the conformal limit of the linear problem associated with the $$ {A}_r^{(1)} $$ A r 1 affine Toda field equation. We compute the quantum corrections by using the Picard-Fuchs operators. The ODE/IM correspondence provides a relation between the Wronskians of the solutions and the Y-functions which satisfy the thermodynamic Bethe ansatz (TBA) equation related to the Lie algebra Ar. For the quadratic potential, we propose a formula to show the equivalence between the logarithm of the Y-function and the WKB period, which is confirmed by solving the TBA equation numerically.


Sign in / Sign up

Export Citation Format

Share Document