matrix phase
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 38)

H-INDEX

19
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1819
Author(s):  
Oleg N. Senkov ◽  
Stéphane Gorsse ◽  
Robert Wheeler ◽  
Eric J. Payton ◽  
Daniel B. Miracle

The microstructure, phase composition, and mechanical properties of NbTiZr, TaTiZr, Re0.3NbTiZr, and Re0.3TaTiZr are reported. The alloys were produced by vacuum arc melting and hot isostatically pressed (HIP’d) at 1400 °C for 3 h under 276 MPa hydrostatic pressure of high-purity argon prior to testing. NbTiZr had a single-phase BCC crystal structure, while TaTiZr had a Ti- and Zr-rich BCC matrix phase and Ta-rich nanometer-sized BCC precipitates, at volume fractions of 0.49 and 0.51, respectively. Re0.3NbTiZr consisted of a BCC matrix phase and Re-rich precipitates with a FCC crystal structure and the volume fraction of 0.14. The microstructure of Re0.3TaTiZr consisted of a Zr-rich BCC matrix phase and coarse, Re and Ta rich, BCC particles, which volume fraction was 0.47. NbTiZr and TaTiZr had a room temperature (RT) yield stress of 920 MPa and 1670 MPa, respectively. While, 10 at.% Re additions increased the RT yield stress to 1220 MPa in Re0.3NbTiZr and 1715 MPa in Re0.3TaTiZr. Re also considerably improved the RT ductility of TaTiZr, from about 2.5% to 10% of true strain. The positive strengthening effect from the Re additions was retained at high (800–1200 °C) temperatures.


Author(s):  
Isameldeen E. Daffallah ◽  
◽  
Abdulwahab S. Almusallam ◽  

Large amplitude oscillatory shear (LAOS) was performed on non-Newtonian minor phase in Newtonian matrix phase polymer blends as a first step toward understating more complex immiscible polymer blends under high deformation condition. The blend consists polybutadiene (PBD) as the droplet phase and polydimethylsiloxane (PDMS) as the matrix phase. The PBD droplet phase was an elastic “Boger” fluid prepared by dissolving a high-molecular-weight PBD into a low-molecular-weight Newtonian PBD. Different percentages of the high-molecular-weight PBD were used to prepare different types of Boger fluids that resulted in blends with different viscosity ratios from lower than unity, to unity and higher than unity. Furthermore, the LAOS results of the blends were analyzed by using the Fourier Transform (FT) technique. From a theoretical point of view, the constrained volume model (CV-model) for Newtonian components is adapted to the case of a Newtonian matrix phase and non-Newtonian Boger fluid droplet phase by taking into account stresses that arise in the Boger fluids. The adapted model and the Newtonian CV-model were compared to the experimental results of FT-LAOS for checking the predictability of the model against the rheological properties. The adapted model shows some reasonable qualitative and quantitative agreements at high strain amplitude values.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 977
Author(s):  
Renlin Zhu ◽  
Jianli Li ◽  
Jiajun Jiang ◽  
Yue Yu ◽  
Hangyu Zhu

Kambara Reactor (KR) desulfurization slag used as slag-making material for converter smelting can promote early slag melting in the initial stage and improve the efficiency of dephosphorization. However, its direct utilization as a slagging material can increase the sulfur content in molten steel since KR desulfurization slag contains 1~2.5% sulfur. Therefore, this research focuses on the effect of basicity on the precipitation behavior and occurrence state of sulfur in KR desulfurization slag in order to provide an academic reference for the subsequent removal of sulfur from slag through an oxidizing atmosphere. The solidification process of slag was simulated by the Factsage8.0. The slag samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), and the amount of CaS grains was analyzed using Image-ProPlus6.0 software. The thermodynamic calculation showed that the crystallization temperature of CaS in the molten slag gradually decreased with the increase in basicity, and the CaS crystals in the molten slag mainly existed in the matrix phase and at the silicate grain boundaries. A large number of CaS grains were precipitated along the silicate grain boundary in low-basicity (R = 2.5 and 3.0) slags and fewer CaS grains were precipitated along the silicate grain boundary, while the CaS grain density in the matrix phase was higher in the high-basicity (R = 3.5, 4.0, 4.5) slag. With the increase in basicity, the number of CaS grains gradually decreased, and the CaS grain sizes in slag sample increased gradually. The sulfur in the synthetic slag was in the form of CaS crystals and the amorphous phase, and the content of amorphous sulfur gradually increased with increasing basicity.


2021 ◽  
pp. 130714
Author(s):  
Shuaizhao Jin ◽  
Xiaohan Yu ◽  
Xiaoli Guan ◽  
Xin Gu ◽  
Yixin Yan ◽  
...  

2021 ◽  
pp. 108128652110235
Author(s):  
Melanie P. Lutz ◽  
Robert W. Zimmerman

A brief review is given of the effect of porosity on the Poisson ratio of a porous material. In contrast to elastic moduli such as K, G, or E, which always decrease with the addition of pores into a matrix, the Poisson ratio [Formula: see text] may increase, decrease, or remain the same, depending on the shape of the pores, and on the Poisson ratio of the matrix phase, [Formula: see text]. In general, for a given pore shape, there is a unique critical Poisson ratio, [Formula: see text], such that the addition of pores into the matrix will cause the Poisson ratio to increase if [Formula: see text], decrease if [Formula: see text], and remain unchanged if [Formula: see text]. The critical Poisson ratio for spherical pores is 0.2, for prolate spheroidal pores is close to 0.2, and tends toward zero for thin cracks. For two-dimensional materials, [Formula: see text] for circular pores, 0.306 for squares, 0.227 for equilateral triangles, and again approaches 0 for thin cracks. The presence of a “trapped” fluid in the pore space tends to cause [Formula: see text] to increase, and for the range of parameters that may occur in rocks or concrete, this increase is more pronounced for thin crack-like pores than for equi-dimensional pores. Measurements of the Poisson ratio therefore may allow insight into pore geometry and pore fluid. If the matrix phase is strongly auxetic, small amounts of porosity will generally not cause the Poisson ratio to become positive.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2324
Author(s):  
Mirosław Szala ◽  
Dariusz Chocyk ◽  
Anna Skic ◽  
Mariusz Kamiński ◽  
Wojciech Macek ◽  
...  

From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5 × 1016 cm−2 and 1 × 1017 cm−2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the ε(hcp) to γ(fcc) structure. Unimplanted stellite ε-rich matrix is less prone to plastic deformation than γ and consequently, increase of γ phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable γ structure formed by ion implantation consumes the cavitation load for work-hardening and γ → ε martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of γ phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials.


Sign in / Sign up

Export Citation Format

Share Document