scholarly journals High-order quantum algorithm for solving linear differential equations

2014 ◽  
Vol 47 (10) ◽  
pp. 105301 ◽  
Author(s):  
Dominic W Berry
2021 ◽  
Vol 118 (35) ◽  
pp. e2026805118
Author(s):  
Jin-Peng Liu ◽  
Herman Øie Kolden ◽  
Hari K. Krovi ◽  
Nuno F. Loureiro ◽  
Konstantina Trivisa ◽  
...  

Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming R<1, where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity T2q poly(log⁡T,log⁡n,log⁡1/ϵ)/ϵ, where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for R≥2. Finally, we discuss potential applications, showing that the R<1 condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R.


2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Tao Xin ◽  
Shijie Wei ◽  
Jianlian Cui ◽  
Junxiang Xiao ◽  
Iñigo Arrazola ◽  
...  

1983 ◽  
Vol 51 (8) ◽  
pp. 743-746
Author(s):  
Neil A. Gershenfeld ◽  
Edward H. Schadler ◽  
O. M. Bilaniuk

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammed Çetin ◽  
Mehmet Sezer ◽  
Coşkun Güler

An approximation method based on Lucas polynomials is presented for the solution of the system of high-order linear differential equations with variable coefficients under the mixed conditions. This method transforms the system of ordinary differential equations (ODEs) to the linear algebraic equations system by expanding the approximate solutions in terms of the Lucas polynomials with unknown coefficients and by using the matrix operations and collocation points. In addition, the error analysis based on residual function is developed for present method. To demonstrate the efficiency and accuracy of the method, numerical examples are given with the help of computer programmes written inMapleandMatlab.


Sign in / Sign up

Export Citation Format

Share Document