polynomial solutions
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
J. C. García-Ardila ◽  
M. E. Marriaga

AbstractGiven a linear second-order differential operator $${\mathcal {L}}\equiv \phi \,D^2+\psi \,D$$ L ≡ ϕ D 2 + ψ D with non zero polynomial coefficients of degree at most 2, a sequence of real numbers $$\lambda _n$$ λ n , $$n\geqslant 0$$ n ⩾ 0 , and a Sobolev bilinear form $$\begin{aligned} {\mathcal {B}}(p,q)\,=\,\sum _{k=0}^N\left\langle {{\mathbf {u}}_k,\,p^{(k)}\,q^{(k)}}\right\rangle , \quad N\geqslant 0, \end{aligned}$$ B ( p , q ) = ∑ k = 0 N u k , p ( k ) q ( k ) , N ⩾ 0 , where $${\mathbf {u}}_k$$ u k , $$0\leqslant k \leqslant N$$ 0 ⩽ k ⩽ N , are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation $${\mathcal {L}}[y]=\lambda _n\,y$$ L [ y ] = λ n y with respect to $${\mathcal {B}}$$ B . We show that such polynomials are orthogonal with respect to $${\mathcal {B}}$$ B if the Pearson equations $$D(\phi \,{\mathbf {u}}_k)=(\psi +k\,\phi ')\,{\mathbf {u}}_k$$ D ( ϕ u k ) = ( ψ + k ϕ ′ ) u k , $$0\leqslant k \leqslant N$$ 0 ⩽ k ⩽ N , are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Hasan Sankari ◽  
Ahmad Abdo

Polynomial Pell’s equation is x 2 − D y 2 = ± 1 , where D is a quadratic polynomial with integer coefficients and the solutions X , Y must be quadratic polynomials with integer coefficients. Let D = a 2 x 2 + a 1 x + a 0 be a polynomial in Z x . In this paper, some quadratic polynomial solutions are given for the equation x 2 − D y 2 = ± 1 which are significant from computational point of view.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hasan Sankari ◽  
Ahmad Abdo

In this study, we consider the number of polynomial solutions of the Pell equation x 2 − p t y 2 = 2 is formulated for a nonsquare polynomial p t using the polynomial solutions of the Pell equation x 2 − p t y 2 = 1 . Moreover, a recurrence relation on the polynomial solutions of the Pell equation x 2 − p t y 2 = 2 . Then, we consider the number of polynomial solutions of Diophantine equation E :   X 2 − p t Y 2 + 2 K t X + 2 p t L t Y = 0 . We also obtain some formulas and recurrence relations on the polynomial solution X n , Y n of E .


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lucas MacQuarrie ◽  
Nasser Saad ◽  
Md. Shafiqul Islam

AbstractHahn’s difference operator $D_{q;w}f(x) =({f(qx+w)-f(x)})/({(q-1)x+w})$ D q ; w f ( x ) = ( f ( q x + w ) − f ( x ) ) / ( ( q − 1 ) x + w ) , $q\in (0,1)$ q ∈ ( 0 , 1 ) , $w>0$ w > 0 , $x\neq w/(1-q)$ x ≠ w / ( 1 − q ) is used to unify the recently established difference and q-asymptotic iteration methods (DAIM, qAIM). The technique is applied to solve the second-order linear Hahn difference equations. The necessary and sufficient conditions for polynomial solutions are derived and examined for the $(q;w)$ ( q ; w ) -hypergeometric equation.


Author(s):  
Norbert Steinmetz

AbstractThe purpose of this paper is to determine the main properties of Laplace contour integrals $$\begin{aligned} \Lambda (z)=\frac{1}{2\pi i}\int _\mathfrak {C}\phi (t)e^{-zt}\,dt \end{aligned}$$ Λ ( z ) = 1 2 π i ∫ C ϕ ( t ) e - z t d t that solve linear differential equations $$\begin{aligned} L[w](z):=w^{(n)}+\sum _{j=0}^{n-1}(a_j+b_jz)w^{(j)}=0. \end{aligned}$$ L [ w ] ( z ) : = w ( n ) + ∑ j = 0 n - 1 ( a j + b j z ) w ( j ) = 0 . This concerns, in particular, the order of growth, asymptotic expansions, the Phragmén–Lindelöf indicator, the distribution of zeros, the existence of sub-normal and polynomial solutions, and the corresponding Nevanlinna functions.


Author(s):  
Yves Guemo Tefo ◽  
Rabia Aktaş ◽  
Iván Area ◽  
Esra Güldoğan Lekesiz

AbstractA new class of partial differential equations having symmetric orthogonal solutions is presented. The general equation is presented and orthogonality is obtained using the Sturm–Liouville approach. Conditions on the polynomial coefficients to have admissible partial differential equations are given. The general case is analyzed in detail, providing orthogonality weight function, three-term recurrence relations for the monic orthogonal polynomial solutions, as well as explicit form of these monic orthogonal polynomial solutions, which are solutions of an admissible and potentially self-adjoint linear second-order partial differential equation of hypergeometric type.


2021 ◽  
Vol 03 (05) ◽  
pp. 172-176
Author(s):  
Jumaev Sanjar Saydullaevich ◽  
◽  
Fayziev Murat Sharopovich ◽  
Begmurodov Otabek Ahmadovich ◽  
Majidov Sherzod Amirdinovich ◽  
...  

In this paper, we study how basic systems of polynomial solutions of a differential equation of high order with mixed derivatives of a function of three variables are constructed using combinatorial methods


Author(s):  
Karl Dilcher ◽  
Maciej Ulas

AbstractFor each integer $$n\ge 1$$ n ≥ 1 we consider the unique polynomials $$P, Q\in {\mathbb {Q}}[x]$$ P , Q ∈ Q [ x ] of smallest degree n that are solutions of the equation $$P(x)x^{n+1}+Q(x)(x+1)^{n+1}=1$$ P ( x ) x n + 1 + Q ( x ) ( x + 1 ) n + 1 = 1 . We derive numerous properties of these polynomials and their derivatives, including explicit expansions, differential equations, recurrence relations, generating functions, resultants, discriminants, and irreducibility results. We also consider some related polynomials and their properties.


Sign in / Sign up

Export Citation Format

Share Document