scholarly journals The classical-quantum channel with random state parameters known to the sender

2016 ◽  
Vol 49 (19) ◽  
pp. 195302 ◽  
Author(s):  
Holger Boche ◽  
Ning Cai ◽  
Janis Nötzel
Author(s):  
Masahito Hayashi ◽  
Satoshi Ishizaka ◽  
Akinori Kawachi ◽  
Gen Kimura ◽  
Tomohiro Ogawa

Author(s):  
Masanori Ohya ◽  
Igor V. Volovich

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.


2020 ◽  
Vol 27 (04) ◽  
pp. 2050017
Author(s):  
Michele Dall’Arno ◽  
Sarah Brandsen ◽  
Francesco Buscemi

Given a quantum channel — that is, a completely positive trace-preserving linear map — as the only communication resource available between two parties, we consider the problem of characterizing the set of classical noisy channels that can be obtained from it by means of suitable classical-quantum encodings and quantum-classical decodings, respectively, on the sender’s and the receiver’s side. We consider various classes of linear witnesses and compute their optimum values in closed form for several classes of quantum channels. The witnesses that we consider here are formulated as communication games, in which Alice’s aim is to exploit a single use of a given quantum channel to help Bob guess some information she has received from an external referee.


2017 ◽  
Vol 17 (5&6) ◽  
pp. 380-398
Author(s):  
Ching-Yi Lai ◽  
Runyao Duan

Duan and Winter studied the one-shot zero-error classical capacity of a quantum channel assisted by quantum non-signalling correlations, and formulated this problem as a semidefinite program depending only on the Kraus operator space of the channel. For the class of classical-quantum channels, they showed that the asymptotic zero-error classical capacity assisted by quantum non-signalling correlations, minimized over all classicalquantum channels with a confusability graph G, is exactly log ϑ(G), where ϑ(G) is the celebrated Lov´asz theta function. In this paper, we show that the one-shot capacity for a classical-quantum channel, induced from a circulant graph G defined by equal-sized cyclotomic cosets, is logbϑ(G)c, which further implies that its asymptotic capacity is log ϑ(G). This type of graphs include the cycle graphs of odd length, the Paley graphs of prime vertices, and the cubit residue graphs of prime vertices. Examples of other graphs are also discussed. This gives Lov´asz ϑ function another operational meaning in zero-error classical-quantum communication.


Sign in / Sign up

Export Citation Format

Share Document