scholarly journals Stability Analysis for the Expansive Soil Slope Considering the Influence of Cracks Based on the Upper Bound Method

Author(s):  
Canrong Xie ◽  
Quan Shen ◽  
Zhiwen Wu ◽  
Yanlin Zhao ◽  
Guoxiong Mei
2015 ◽  
Vol 744-746 ◽  
pp. 597-600
Author(s):  
Hong Yu Zhang ◽  
Jiang Hu Chen ◽  
Wen Qing Wu ◽  
Jun Hua Wu

In view of the holes appearing in different area of geo-membrane when the geo-membrane technology is applied to the unsaturated expansive soil slope, the VADOSE/W is used to analyze the wetting-drying cycles caused by rainfall and evaporation on slopes covered by geo-membrane. The influence on the pore-water pressure and volume water content were discussed just caused by the holes. The results show that the hole is nearer to the toe of slope, its impact on the whole seepage field is greater. In addition, the hole appears on the top of slope that the wetting-drying cycle effect is remarkable. It is ensured that the integrity of the geo-membrane which in the lower slope and take some drainage measures in the construction process.


2011 ◽  
Vol 378-379 ◽  
pp. 461-465 ◽  
Author(s):  
Xiao Ming Tu ◽  
Yu You Yang ◽  
Gui He Wang

With the development and utilization of underground space, some new tunnel forms are emerging, such as the rectangular tunnel, double tunnels, treble tunnels and so on. The aim of this paper is to determine the collapse face pressure of a rectangular tunnel driven by a pressurized shield. The calculation is based on the upper-bound method of the limit analysis theory. A translational kinematically admissible failure mechanism consists a sequence of truncated rigid cones are considered for the calculation schemes. The numerical results obtained by the calculation are presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhen Wang ◽  
Xumeng Yang ◽  
Ang Li

Slope stability analysis is a core issue in geotechnical engineering. This paper proposes a method of upper bound limit stability analysis for a slope with multiparameter coordinated variation based on the comprehensive consideration of the nonuniform distribution of slope soil parameters. This method starts from the perspective of energy balance, establishes a slope failure mechanism which meets velocity separation requirements, deduces its calculation formula for external force power and internal energy dissipation power, develops a cycle program for the most dangerous slip surface searching and stability coefficient calculation through computer programming technology, and finally forms a calculation method of upper bound limit stability analysis for the soil slope with nonuniform multiparameter distribution. At the same time, this method takes a dump slope in an open-pit mine as the engineering background, considers the nonuniformity of density, cohesion, and internal friction angle of the slope soil under subsidence, applies upper bound limit analysis to analyze the slope stability, and evaluates the accuracy of analysis results by using the residual thrust method. The results show that upper bound limit analysis has highly accuracy in stability coefficient calculation; compared with the residual thrust method, the stability coefficient calculation result by upper bound limit analysis is a strict upper bound solution, and the calculation error is easy to be estimated and eliminated. Simultaneously, the most dangerous slip surface obtained by upper bound limit analysis can fully satisfy the velocity separation requirement and has a greater engineering reference value.


2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Chao Liang ◽  
Zhijian Wu ◽  
Xinfu Liu ◽  
Zhaomei Xiong ◽  
Tao Li

Sign in / Sign up

Export Citation Format

Share Document