scholarly journals Research on Mechanical Properties and Microstructures of Composite Wall Panels Made of High-Performance Fiber Reinforced Cement-based Composites

2021 ◽  
Vol 638 (1) ◽  
pp. 012088
Author(s):  
Baojun Cheng ◽  
Shengrong Kang ◽  
Pengfei Ma ◽  
Wen Yang ◽  
Boyuan Shi
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Won-Chang Choi ◽  
Hyun-Do Yun

High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement) of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE) fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1) and 8% CSA-J (Type 2) considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs.


2015 ◽  
Vol 732 ◽  
pp. 377-380 ◽  
Author(s):  
Jindřich Fornůsek ◽  
Michal Tvarog

This paper deals about behavior of fiber reinforced cement composite in dependence on the casting direction. Almost fifty concrete prisms of size 400 x 100 x 100 mm were cast; half of these were fiber reinforced concrete (FRC) and the other half was ultra-high performance fiber reinforced concrete (UHPFRC). Approximately one half of both mixtures was cast in horizontal direction and the other half vertically. It was found that the specific fracture energy of horizontally cast prisms was approximately 4,5 times larger for both materials than the vertically cast ones. Ultimate loads of FRC were very similar for both casting directions. Peak loads of the horizontally cast UHPFRC prisms were approximately 3 times larger than the vertically cast ones. This research confirmed that there is significant influence of the casting direction on the fiber reinforced concrete characteristics.


Sign in / Sign up

Export Citation Format

Share Document