scholarly journals Three dimensional reverse time migration on common offset GPR data for void imaging

2021 ◽  
Vol 660 (1) ◽  
pp. 012017
Author(s):  
Honghua Wang ◽  
Junbo Gong ◽  
Zhihuan Liang
Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Zhengxin Dong ◽  
George A. McMechan

A three‐dimensional (3-D) prestack reverse‐time migration algorithm for common‐source P‐wave data from anisotropic media is developed and illustrated by application to synthetic data. Both extrapolation of the data and computation of the excitation‐time imaging condition are implemented using a second‐order finite‐ difference solution of the 3-D anisotropic scalar‐wave equation. Poorly focused, distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation; well focused, clear images are obtained using anisotropic extrapolation. A priori estimation of the 3-D anisotropic velocity distribution is required. Zones of anomalous, directionally dependent reflectivity associated with anisotropic fracture zones are detectable in both the 3-D common‐ source data and the corresponding migrated images.


Author(s):  
Yingming Qu ◽  
Jingru Ren ◽  
Chongpeng Huang ◽  
Zhenchun Li ◽  
Yixin Wang ◽  
...  

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. A1-A6 ◽  
Author(s):  
Xufei Gong ◽  
Qizhen Du ◽  
Qiang Zhao

Three-dimensional elastic reverse time migration has been confronted with the problem of generating scalar images with vector S-waves. The underlying principle for solving this problem is to convert the vector S-waves into scalars. Previous methods were mainly focused on PS-imaging, but they usually cannot work properly on SP- and SS-cases. The complexity of SP- and SS-imaging arises from the fact that the incident S-wave has unpredictable relationship with the raypath plane. We have suggested that S-wave should be treated separately as SV- and SH-waves, which keep predictable relationships with the raypath plane. First, the elastic wavefield is separated into P- and S-waves using the Helmholtz decomposition. Then, we evaluate the normal direction of the raypath plane at each imaging grid. Next, we separate the vector S-wave obtained with curl operator into SH- and SV-waves, both of which are scalars. Finally, correlation imaging conditions are implemented to those scalar wave modes to produce scalar SV-P, SV-SV, and SH-SH images.


2020 ◽  
Author(s):  
Fei Cheng ◽  
Jiangping Liu

<p>Cross-well 2-D seismic CT imaging method has been widely used in many fields such as oil-gas exploration and engineering geological exploration, but for the real three-dimensional space, this traditional method can only obtain the two-dimensional velocity profile between the two wells, cannot obtain the lateral geological structure outside the profile; Besides, the seismic signal received from cross-well exploration is the response of geologic body in three-dimensional space, which may be influenced by the geologic body outside the two-well profile, and that will give a result of image distortion and having an effect on geological interpretation. Based on the theory of three-dimensional acoustic wave equation, this paper implements a three-dimensional cross-well reverse-time migration imaging method to obtain the cross-well 3-D geological structure with the observed value from multiple wells by using the first-order velocity-stress acoustic wave equation and firing time imaging conditions. Calculation results of the typical theoretical models show that: The multi-well three-dimensional imaging method adopted in this paper can accurately and effectively realize the cross-well 3-D geological imaging with high resolution and reliable results. Multi-well three-dimensional imaging method can effectively obtain the cross-well three-dimensional structure distribution, which can solve the issue of hard to obtain the transverse structure change by 2-D imaging. It also can solve the imaging problems of big dip angle interface in CT imaging and obtains the true cross-well 3-D geological structure with the multiple well data, which can provide the basis for cross-well 3-D seismic exploration.</p>


2018 ◽  
Author(s):  
Jinli Li ◽  
Yingming Qu ◽  
Jianxun Liu ◽  
Zhenchun Li

Author(s):  
Michael A. H. Hedlin ◽  
Kristoffer T. Walker

We discuss the use of reverse time migration (RTM) with dense seismic networks for the detection and location of sources of atmospheric infrasound. Seismometers measure the response of the Earth's surface to infrasound through acoustic-to-seismic coupling. RTM has recently been applied to data from the USArray network to create a catalogue of infrasonic sources in the western US. Specifically, several hundred sources were detected in 2007–2008, many of which were not observed by regional infrasonic arrays. The influence of the east–west stratospheric zonal winds is clearly seen in the seismic data with most detections made downwind of the source. We study this large-scale anisotropy of infrasonic propagation, using a winter and summer source in Idaho. The bandpass-filtered (1–5 Hz) seismic waveforms reveal in detail the two-dimensional spread of the infrasonic wavefield across the Earth's surface within approximately 800 km of the source. Using three-dimensional ray tracing, we find that the stratospheric winds above 30 km altitude in the ground-to-space (G2S) atmospheric model explain well the observed anisotropy pattern. We also analyse infrasound from well-constrained explosions in northern Utah with a denser IRIS PASSCAL seismic network. The standard G2S model correctly predicts the anisotropy of the stratospheric duct, but it incorrectly predicts the dimensions of the shadow zones in the downwind direction. We show that the inclusion of finer-scale structure owing to internal gravity waves infills the shadow zones and predicts the observed time durations of the signals. From the success of this method in predicting the observations, we propose that multipathing owing to fine scale, layer-cake structure is the primary mechanism governing propagation for frequencies above approximately 1 Hz and infer that stochastic approaches incorporating internal gravity waves are a useful improvement to the standard G2S model for infrasonic propagation modelling.


Sign in / Sign up

Export Citation Format

Share Document