scholarly journals Latent heat energy storage system using phase change materials and techniques for their performance improvement: A Review

2021 ◽  
Vol 1126 (1) ◽  
pp. 012068
Author(s):  
S S Mundra ◽  
S S Pardeshi
2018 ◽  
Author(s):  
Habeeb Ur Rahman Khan ◽  
Taha K. Aldoss ◽  
Muhammad M. Rahman

The objective of this work is to investigate the performance of a thermal energy storage system using multiple phase change materials (PCMs). This study is based on latent heat thermal energy storage. Three phase change materials namely, Potassium Hydroxide (KOH), Potassium Nitrate (KNO3), and Sodium Nitrate (NaNO3) have been selected for this study. These PCMs have been chosen because of their inherent thermal stability, high melting point, high latent heat of fusion per unit mass, relatively high thermal conductivity, high specific heat, non-flammable properties, and availability. In this work, the performance of the thermal energy storage system is analyzed by evaluating key parameters such as liquid fraction and the amount of energy stored and extracted during charging and discharging respectively. Two types of PCM layouts, uniform and cascaded, have been employed. In case of uniform PCM layout, only one type of PCM is used at a time throughout the bed. In case of cascaded PCM layout, multiple PCMs are used at a time throughout the bed. The cascaded layout further has two types of arrangement. The first type of arrangement is the slope down arrangement where the PCMs are placed in the descending order of their melting temperatures. The second type of arrangement is the slope up arrangement where the PCMs are placed in the ascending order of their melting temperatures. Overall, the cascaded layout excels in performance when compared to the uniform layout in terms of PCM melting and solidification time and in terms of energy stored and extracted. Keeping these factors in mind, we recommend using a cascaded layout in a Thermal Energy Storage System (TESS) as opposed to a uniform layout.


Author(s):  
Dominic Groulx ◽  
Wilson Ogoh

One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled with paraffin wax, through which a copper pipe carrying hot water is inserted, is presented in this paper. It is shown that the physical processes encountered in the flow of water, the heat transfer by conduction and convection, and the phase change behavior of the phase change material can be modeled numerically using the finite element method. Only charging (melting) is treated in this paper. The appearance and the behavior of the melting front can be simulated by modifying the specific heat of the PCM to account for the increased amount of energy, in the form of latent heat of fusion, needed to melt the PCM over its melting temperature range. The effects of adding fins to the system are also studied, as well as the effects of the water inlet velocity.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3185-3193
Author(s):  
Sina Dang ◽  
Hongjun Xue ◽  
Xiaoyan Zhang ◽  
Chengwen Zhong

To strengthen the heat and mass transfer capacity and improve the temperature regulation rate, potential storage is taken as the research object in this research to study the heat energy storage of the battery in the low temperature environment. Lattice Boltzmann method is adopted to study the heat energy storage influence mechanism of the temperature regulation system of the low temperature phase-change materials. In addition, the influence of different physical parameters (thermal conductivity and latent heat of phase change) on the thermal insulation of the system in the process of temperature control is revealed. The results show that the mechanism of heat and mass transfer in the process of heat storage and temperature control is related to the different physical properties of phase change materials. The decrease of thermal conductivity and the increase of latent heat of phase change materials will greatly increase the effect of heat energy storage. Therefore, under the action of phase change latent heat, phase change material can effectively extend the holding time of the battery in the low temperature environment.


Sign in / Sign up

Export Citation Format

Share Document