phase change process
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
Amrita Sharma ◽  
Parth Patel ◽  
Shobhana Singh ◽  
Bobin Mandal ◽  
Manvendra Sharma ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3019
Author(s):  
Lioua Kolsi ◽  
Fatih Selimefendigil ◽  
Mohamed Omri ◽  
Lotfi Ladhar

Effects of sequential velocity and variable magnetic field on the phase change during hybrid nanofluid convection through a 3D cylinder containing a phase-change material packed bed (PCM-PB) system is analyzed with the finite element method. As the heat transfer fluid, 40% ethylene glycol with hybrid TiO2-Al2O3 nanoparticles is considered. Impacts of the sequential velocity parameter (K, between 0.5 and 1.5), geometric factor of the conic-shaped PCM-PB (M, between 0.2 and 0.9), magnetic field strength (Ha number between 0 and 50) and solid volume fraction of hybrid nanoparticles (vol.% between 0.02% and 0.1%) on the phase change dynamics are explored. Effects of both constant and varying magnetic fields on the phase change process were considered. Due to the increased fluid velocity at the walls, the phase change becomes higher with higher values of the sequential velocity parameter (K). There is a 21.6% reduction in phase transition time (tF) between the smallest and highest values of K both in the absence and presence of a constant magnetic field. The value of tF is reduced with higher magnetic field strength and the amount of reduction depends upon the sequential velocity parameter. At K = 1.5, the reduction amount with the highest Ha number is 14.7%, while it is 26% at K = 0.5. When nanoparticle is loaded in the base fluid, the value of tF is further reduced. In the absence of a magnetic field, the amount of phase-transition time reduction is 6.9%, while at Ha = 50, it is 11.7%. The phase change process can be controlled with varying magnetic field parameters as well. As the wave number and amplitude of the varying magnetic field are considered, significant changes in the tF are observed.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2566
Author(s):  
Lioua Kolsi ◽  
Fatih Selimefendigil ◽  
Mohamed Omri

The combined effects of surface rotation and using binary nanoparticles on the phase change process in a 3D complex-shaped vented cavity with ventilation ports were studied during nanofluid convection. The geometry was a double T-shaped rotating vented cavity, while hybrid nanofluid contained binary Ag–MgO nano-sized particles. One of the novelties of the study wasthat a vented cavity was first used with the phase change–packed bed (PC–PB) system during nanofluid convection. The PC–PB system contained a spherical-shaped, encapsulated PCM paraffin wax. The Galerkin weighted residual finite element method was used as the solution method. The computations were carried out for varying values of the Reynolds numbers (100 ≤ Re ≤ 500),rotational Reynolds numbers (100 ≤ Rew ≤ 500), size of the ports (0.1L1 ≤ di ≤ 0.5L1), length of the PC–PB system (0.4L1 ≤ L0 ≤ L1), and location of the PC–PB (0 ≤ yp ≤ 0.25H). In the heat transfer fluid, the nanoparticle solid volume fraction amount was taken between 0 and 0.02%. When the fluid stream (Re) and surface rotational speed increased, the phase change process became fast. Effects of surface rotation became effective for lower values of Re while at Re = 100 and Re = 500; full phase transition time (tp) was reduced by about 39.8% and 24.5%. The port size and nanoparticle addition in the base fluid had positive impacts on the phase transition, while 34.8% reduction in tp was obtained at the largest port size, though this amount was only 9.5%, with the highest nanoparticle volume fraction. The length and vertical location of the PC–PB system have impacts on the phase transition dynamics. The reduction and increment amount in the value of tp with varying location and length of the PC–PB zone became 20% and 58%. As convection in cavities with ventilation ports are relevant in many thermal energy systems, the outcomes of this study will be helpful for the initial design and optimization of many PCM-embedded systems encountered in solar power, thermal management, refrigeration, and many other systems.


Author(s):  
Kaouther Ghachem ◽  
Fatih Selimefendigil ◽  
Hakan F. Öztop ◽  
Mohammed Almeshaal ◽  
Muapper Alhadri ◽  
...  

2021 ◽  
Author(s):  
xinrui xiang ◽  
Che-Fu Su ◽  
Jirui Wang ◽  
Edward Fratto ◽  
Majid Charmchi ◽  
...  

2021 ◽  
pp. 116096
Author(s):  
Pei-Ying Xiong ◽  
Adel Almarashi ◽  
Hayder A. Dhahad ◽  
Wissam H. Alawee ◽  
Alibek Issakhov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document