scholarly journals Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

Author(s):  
N Karthik ◽  
X Goldwin Xavier ◽  
R Rajasekar ◽  
P Ganesh Bairavan ◽  
S Dhanseelan
Energy ◽  
2012 ◽  
Vol 46 (1) ◽  
pp. 596-605 ◽  
Author(s):  
Pouya Mohammadi ◽  
Ali M. Nikbakht ◽  
Meisam Tabatabaei ◽  
Khalil Farhadi ◽  
Arash Mohebbi ◽  
...  

2018 ◽  
Vol 24 (8) ◽  
pp. 5712-5717 ◽  
Author(s):  
Praveen Anchupogu ◽  
G. Lakshmi Narayana Rao ◽  
B Balakrishna ◽  
B. Ravi Sankar ◽  
P Umamaheswarrao

Development of environmental friendly fuels is the ever constant endeavor in the field of engine technology. Owing to the merits of Diesel fuel, number of vehicles operated with Diesel are increased to meet the needs of multiplied population. However, depletion of fossil fuels and environmental pollution are the main concerns with the diesel engines. Usage of bio-fuel is found to be the prominent technology in compensating fossil fuels depletion, whereas emission control is a major setback. Suspension of nano particles in the conventional fuels termed as Nanofuel is the prominent technology in emission control. Hence, the present work is aimed to investigate the influence of TiO2 nano particulate in Diesel on the performance and emission characteristic of single cylinder Diesel engine. From the experimental results it is observed that the performance of the engine is marginally increased with the suspension of TiO2 nano particles whereas the reduction emissions are considerable.


2015 ◽  
Vol 787 ◽  
pp. 741-745 ◽  
Author(s):  
P. Ravichandra Ganesh ◽  
K. Hemachandra Reddy

The paper presents an experimental investigation, to evaluate the performance and emission characteristics of a direct injection diesel engine using diesel-ethanol blends with aqueous cerium oxide nano fluid (ACN) as additive at different load conditions. The test fuel (D85E15ACN) prepared using ultrasonic sonicator, contains diesel 85%, ethanol 15% (D85+E15) by volume, with 1ml of aqueous cerium oxide nanofluid (ACN) added with the blend. The results show that, when the engine is run with D85E15ACN, there is an increase in brake thermal efficiency and reduction in hydrocarbon (HC), carbon monoxide (CO) and smoke emissions, compared to that of neat diesel.However, nitric oxide (NO) emission are more for D85E15ACN.


Sign in / Sign up

Export Citation Format

Share Document