scholarly journals Real time human motion recognition via spiking neural network

Author(s):  
Jing Yang ◽  
Qingyuan Wu ◽  
Maiqi Huang ◽  
Ting Luo
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Zhanjun Hao ◽  
Yu Duan ◽  
Xiaochao Dang ◽  
Tong Zhang

WiFi indoor personnel behavior recognition has become the core technology of wireless network perception. However, the existing human behavior recognition methods have great challenges in terms of detection accuracy, intrusion, and complexity of operations. In this paper, we firstly analyze and summarize the existing human motion recognition schemes, and due to the existence of the problems in them, we propose a noninvasive, highly robust complex human motion recognition scheme based on Channel State Information (CSI), that is, CSI-HC, and the traditional Chinese martial art XingYiQuan is verified as a complex motion background. CSI-HC is divided into two phases: offline and online. In the offline phase, the human motion data are collected on the commercial Atheros NIC and a powerful denoising method is constructed by using the Butterworth low-pass filter and wavelet function to filter the outliers in the motion data. Then, through Restricted Boltzmann Machine (RBM) training and classification, we establish offline fingerprint information. In the online phase, SoftMax regression is used to correct the RBM classification to process the motion data collected in real time and the processed real-time data are matched with the offline fingerprint information. On this basis, the recognition of a complex human motion is realized. Finally, through repeated experiments in three classical indoor scenes, the parameter setting and user diversity affecting the accuracy of motion recognition are analyzed and the robustness of CSI-HC is detected. In addition, the performance of the proposed method is compared with that of the existing motion recognition methods. The experimental results show that the average motion recognition rate of CSI-HC in three classic indoor scenes reaches 85.4%, in terms of motion complexity and indoor recognition accuracy. Compared with other algorithms, it has higher stability and robustness.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yang Ju

Aiming at the problem that it is difficult to balance the speed and accuracy of human behaviour recognition, this paper proposes a method of motion recognition based on random projection. Firstly, the optical flow picture and Red, Green, Blue (RGB) picture obtained by the Lucas-Kanade algorithm are used. Secondly, the data of optical flow pictures and RGB pictures are compressed based on a random projection matrix of compressed sensing, which effectively reduces power consumption. At the same time, based on random projection compression data, it can effectively find the optimal linear representation to reconstruct training samples and test samples. Thirdly, a multichannel 3D convolutional neural network is proposed, and the multiple information extracted by the network is fused to form an output recognizer. Experimental results show that the algorithm in this paper significantly improves the recognition rate of multicategory actions and effectively reduces the computational complexity and running time of the recognition algorithm.


Sign in / Sign up

Export Citation Format

Share Document