Real-time human motion recognition by an aerial robot

Author(s):  
T. Ogala ◽  
S. Matsuda ◽  
Joo Kooi Tan ◽  
S. Ishikawa
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Zhanjun Hao ◽  
Yu Duan ◽  
Xiaochao Dang ◽  
Tong Zhang

WiFi indoor personnel behavior recognition has become the core technology of wireless network perception. However, the existing human behavior recognition methods have great challenges in terms of detection accuracy, intrusion, and complexity of operations. In this paper, we firstly analyze and summarize the existing human motion recognition schemes, and due to the existence of the problems in them, we propose a noninvasive, highly robust complex human motion recognition scheme based on Channel State Information (CSI), that is, CSI-HC, and the traditional Chinese martial art XingYiQuan is verified as a complex motion background. CSI-HC is divided into two phases: offline and online. In the offline phase, the human motion data are collected on the commercial Atheros NIC and a powerful denoising method is constructed by using the Butterworth low-pass filter and wavelet function to filter the outliers in the motion data. Then, through Restricted Boltzmann Machine (RBM) training and classification, we establish offline fingerprint information. In the online phase, SoftMax regression is used to correct the RBM classification to process the motion data collected in real time and the processed real-time data are matched with the offline fingerprint information. On this basis, the recognition of a complex human motion is realized. Finally, through repeated experiments in three classical indoor scenes, the parameter setting and user diversity affecting the accuracy of motion recognition are analyzed and the robustness of CSI-HC is detected. In addition, the performance of the proposed method is compared with that of the existing motion recognition methods. The experimental results show that the average motion recognition rate of CSI-HC in three classic indoor scenes reaches 85.4%, in terms of motion complexity and indoor recognition accuracy. Compared with other algorithms, it has higher stability and robustness.


Author(s):  
K. LEMAN ◽  
G. ANKIT ◽  
T. TAN

This paper describes the design and implementation of autonomous real-time motion recognition on a Personal Digital Assistant. All previous such applications have been non real-time and required user interaction. The motivation to use a PDA is to test the viability of performing complex video processing on an embedded platform. The application was constructed using a representation and recognition technique for identifying patterns using Hu Moments. The approach is based upon temporal templates (Motion Energy and History Images) and their matching in time. The implementation was done using Intel Integrated Performance Primitives functions in order to reduce the complexity of the application. Tests were conducted using 5 different motion actions like arm waving, walking from left and right of the camera, head tilting and bending forward. Suggestions were also made on how to improve the performance of the system and possible applications.


2021 ◽  
pp. 1-1
Author(s):  
Pengyun Chen ◽  
Xiang Wang ◽  
Mingyang Wanga ◽  
Xiaqing Yang ◽  
Shisheng Guo ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098321
Author(s):  
Anzhu Miao ◽  
Feiping Liu

Human motion recognition is a branch of computer vision research and is widely used in fields like interactive entertainment. Most research work focuses on human motion recognition methods based on traditional video streams. Traditional RGB video contains rich colors, edges, and other information, but due to complex background, variable illumination, occlusion, viewing angle changes, and other factors, the accuracy of motion recognition algorithms is not high. For the problems, this article puts forward human motion recognition based on extreme learning machine (ELM). ELM uses the randomly calculated implicit network layer parameters for network training, which greatly reduces the time spent on network training and reduces computational complexity. In this article, the interframe difference method is used to detect the motion region, and then, the HOG3D feature descriptor is used for feature extraction. Finally, ELM is used for classification and recognition. The results imply that the method proposed here has achieved good results in human motion recognition.


Sign in / Sign up

Export Citation Format

Share Document