detection accuracy
Recently Published Documents





Nagashree Nagesh ◽  
Premjyoti Patil ◽  
Shantakumar Patil ◽  
Mallikarjun Kokatanur

The brainchild in any medical image processing lied in how accurately the diseases are diagnosed. Especially in the case of neural disorders such as autism spectrum disorder (ASD), accurate detection was still a challenge. Several noninvasive neuroimaging techniques provided experts information about the functionality and anatomical structure of the brain. As autism is a neural disorder, magnetic resonance imaging (MRI) of the brain gave a complex structure and functionality. Many machine learning techniques were proposed to improve the classification and detection accuracy of autism in MRI images. Our work focused mainly on developing the architecture of convolution neural networks (CNN) combining the genetic algorithm. Such artificial intelligence (AI) techniques were very much needed for training as they gave better accuracy compared to traditional statistical methods.

2022 ◽  
Vol 22 (1) ◽  
pp. 1-21
Iram Bibi ◽  
Adnan Akhunzada ◽  
Jahanzaib Malik ◽  
Muhammad Khurram Khan ◽  
Muhammad Dawood

Volunteer Computing provision of seamless connectivity that enables convenient and rapid deployment of greener and cheaper computing infrastructure is extremely promising to complement next-generation distributed computing systems. Undoubtedly, without tactile Internet and secure VC ecosystems, harnessing its full potentials and making it an alternative viable and reliable computing infrastructure is next to impossible. Android-enabled smart devices, applications, and services are inevitable for Volunteer computing. Contrarily, the progressive developments of sophisticated Android malware may reduce its exponential growth. Besides, Android malwares are considered the most potential and persistent cyber threat to mobile VC systems. To secure Android-based mobile volunteer computing, the authors proposed MulDroid, an efficient and self-learning autonomous hybrid (Long-Short-Term Memory, Convolutional Neural Network, Deep Neural Network) multi-vector Android malware threat detection framework. The proposed mechanism is highly scalable with well-coordinated infrastructure and self-optimizing capabilities to proficiently tackle fast-growing dynamic variants of sophisticated malware threats and attacks with 99.01% detection accuracy. For a comprehensive evaluation, the authors employed current state-of-the-art malware datasets (Android Malware Dataset, Androzoo) with standard performance evaluation metrics. Moreover, MulDroid is compared with our constructed contemporary hybrid DL-driven architectures and benchmark algorithms. Our proposed mechanism outperforms in terms of detection accuracy with a trivial tradeoff speed efficiency. Additionally, a 10-fold cross-validation is performed to explicitly show unbiased results.

2022 ◽  
Vol 11 (3) ◽  
pp. 1-11
Sudhakar Sengan ◽  
Osamah Ibrahim Khalaf ◽  
Vidya Sagar P. ◽  
Dilip Kumar Sharma ◽  
Arokia Jesu Prabhu L. ◽  

Existing methods use static path identifiers, making it easy for attackers to conduct DDoS flooding attacks. Create a system using Dynamic Secure aware Routing by Machine Learning (DAR-ML) to solve healthcare data. A DoS detection system by ML algorithm is proposed in this paper. First, to access the user to see the authorized process. Next, after the user registration, users can compare path information through correlation factors between nodes. Then, choose the device that will automatically activate and decrypt the data key. The DAR-ML is traced back to all healthcare data in the end module. In the next module, the users and admin can describe the results. These are the outcomes of using the network to make it easy. Through a time interval of 21.19% of data traffic, the findings demonstrate an attack detection accuracy of over 98.19%, with high precision and a probability of false alarm.

Iyad Khalil Tumar ◽  
Adnan Mohammad Arar ◽  
Ayman Abd El Saleh

<p>Spectrum sensing in cognitive radio (CR) is a critical process as it directly influences the accuracy of detection. Noise uncertainty affects the reliability of detecting vacant holes in the spectrum, thus limiting the access of that spectrum by secondary users (SUs). In such uncertain environment; SUs sense the received power of a primary user (PU) independently with different measures of signal-to-noise ratio (SNR). Long sensing time serves in mitigating the effect of noise uncertainty, but on the cost of throughput performance of CR system. In this paper, the scheme of an asynchronous and crossed sensing-reporting is presented. The scheme reduces energy consumption during sensing process without affecting the detection accuracy. Exploiting the included idle time (𝑇𝑖) in sensing time slot; each SU collects power samples with higher SNR directly performs the reporting process to a fusion center (FC) consecutively. The FC terminates the sensing and reporting processes at a specific sensing time that corresponds to the lowest SNR (𝑆𝑁𝑅𝑤𝑎𝑙𝑙). Furthermore, this integrated scheme aims at optimizing the total frame duration (𝑇𝑓). Mathematical expressions of the scheme are obtained. Analytical results show the efficiency of the scheme in terms of energy saving and throughput increment under noise uncerainty.</p>

Hassan Najadat ◽  
Mohammad A. Alzubaidi ◽  
Islam Qarqaz

Reviews or comments that users leave on social media have great importance for companies and business entities. New product ideas can be evaluated based on customer reactions. However, this use of social media is complicated by those who post spam on social media in the form of reviews and comments. Designing methodologies to automatically detect and block social media spam is complicated by the fact that spammers continuously develop new ways to leave their spam comments. Researchers have proposed several methods to detect English spam reviews. However, few studies have been conducted to detect Arabic spam reviews. This article proposes a keyword-based method for detecting Arabic spam reviews. Keywords or Features are subsets of words from the original text that are labelled as important. A term's weight, Term Frequency–Inverse Document Frequency (TF-IDF) matrix, and filter methods (such as information gain, chi-squared, deviation, correlation, and uncertainty) have been used to extract keywords from Arabic text. The method proposed in this article detects Arabic spam in Facebook comments. The dataset consists of 3,000 Arabic comments extracted from Facebook pages. Four different machine learning algorithms are used in the detection process, including C4.5, kNN, SVM, and Naïve Bayes classifiers. The results show that the Decision Tree classifier outperforms the other classification algorithms, with a detection accuracy of 92.63%.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 269
Ismail Mohamed ◽  
Yaser Dalveren ◽  
Ferhat Ozgur Catak ◽  
Ali Kara

In the development of radiofrequency fingerprinting (RFF), one of the major challenges is to extract subtle and robust features from transmitted signals of wireless devices to be used in accurate identification of possible threats to the wireless network. To overcome this challenge, the use of the transient region of the transmitted signals could be one of the best options. For an efficient transient-based RFF, it is also necessary to accurately and precisely estimate the transient region of the signal. Here, the most important difficulty can be attributed to the detection of the transient starting point. Thus, several methods have been developed to detect transient start in the literature. Among them, the energy criterion method based on the instantaneous amplitude characteristics (EC-a) was shown to be superior in a recent study. The study reported the performance of the EC-a method for a set of Wi-Fi signals captured from a particular Wi-Fi device brand. However, since the transient pattern varies according to the type of wireless device, the device diversity needs to be increased to achieve more reliable results. Therefore, this study is aimed at assessing the efficiency of the EC-a method across a large set of Wi-Fi signals captured from various Wi-Fi devices for the first time. To this end, Wi-Fi signals are first captured from smartphones of five brands, for a wide range of signal-to-noise ratio (SNR) values defined as low (−3 to 5 dB), medium (5 to 15 dB), and high (15 to 30 dB). Then, the performance of the EC-a method and well-known methods was comparatively assessed, and the efficiency of the EC-a method was verified in terms of detection accuracy.

2022 ◽  
Vol 6 (GROUP) ◽  
pp. 1-25
Ziyi Kou ◽  
Lanyu Shang ◽  
Yang Zhang ◽  
Dong Wang

The proliferation of social media has promoted the spread of misinformation that raises many concerns in our society. This paper focuses on a critical problem of explainable COVID-19 misinformation detection that aims to accurately identify and explain misleading COVID-19 claims on social media. Motivated by the lack of COVID-19 relevant knowledge in existing solutions, we construct a novel crowdsource knowledge graph based approach to incorporate the COVID-19 knowledge facts by leveraging the collaborative efforts of expert and non-expert crowd workers. Two important challenges exist in developing our solution: i) how to effectively coordinate the crowd efforts from both expert and non-expert workers to generate the relevant knowledge facts for detecting COVID-19 misinformation; ii) How to leverage the knowledge facts from the constructed knowledge graph to accurately explain the detected COVID-19 misinformation. To address the above challenges, we develop HC-COVID, a hierarchical crowdsource knowledge graph based framework that explicitly models the COVID-19 knowledge facts contributed by crowd workers with different levels of expertise and accurately identifies the related knowledge facts to explain the detection results. We evaluate HC-COVID using two public real-world datasets on social media. Evaluation results demonstrate that HC-COVID significantly outperforms state-of-the-art baselines in terms of the detection accuracy of misleading COVID-19 claims and the quality of the explanations.

2022 ◽  
Vol 14 (2) ◽  
pp. 342
Ying Zhu ◽  
Tingting Yang ◽  
Mi Wang ◽  
Hanyu Hong ◽  
Yaozong Zhang ◽  

Satellite platform jitter is a non-negligible factor that affects the image quality of optical cameras. Considering the limitations of traditional platform jitter detection methods that are based on attitude sensors and remote sensing images, this paper proposed a jitter detection method using sequence CMOS images captured by rolling shutter for high-resolution remote sensing satellite. Through the three main steps of dense matching, relative jitter error analysis, and absolute jitter error modeling using sequence CMOS images, the periodic jitter error on the imaging focal plane of the spaceborne camera was able to be measured accurately. The experiments using three datasets with different jitter frequencies simulated from real remote sensing data were conducted. The experimental results showed that the jitter detection method using sequence CMOS images proposed in this paper can accurately recover the frequency, amplitude, and initial phase information of satellite jitter at 100 Hz, 10 Hz, and 2 Hz. Additionally, the detection accuracy reached 0.02 pixels, which can provide a reliable data basis for remote sensing image jitter error compensation.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 576
Shilei Lyu ◽  
Ruiyao Li ◽  
Yawen Zhao ◽  
Zhen Li ◽  
Renjie Fan ◽  

Green citrus detection in citrus orchards provides reliable support for production management chains, such as fruit thinning, sunburn prevention and yield estimation. In this paper, we proposed a lightweight object detection YOLOv5-CS (Citrus Sort) model to realize object detection and the accurate counting of green citrus in the natural environment. First, we employ image rotation codes to improve the generalization ability of the model. Second, in the backbone, a convolutional layer is replaced by a convolutional block attention module, and a detection layer is embedded to improve the detection accuracy of the little citrus. Third, both the loss function CIoU (Complete Intersection over Union) and cosine annealing algorithm are used to get the better training effect of the model. Finally, our model is migrated and deployed to the AI (Artificial Intelligence) edge system. Furthermore, we apply the scene segmentation method using the “virtual region” to achieve accurate counting of the green citrus, thereby forming an embedded system of green citrus counting by edge computing. The results show that the [email protected] of the YOLOv5-CS model for green citrus was 98.23%, and the recall is 97.66%. The inference speed of YOLOv5-CS detecting a picture on the server is 0.017 s, and the inference speed on Nvidia Jetson Xavier NX is 0.037 s. The detection and counting frame rate of the AI edge system-side counting system is 28 FPS, which meets the counting requirements of green citrus.

2022 ◽  
Vol 15 ◽  
Chongwen Wang ◽  
Zicheng Wang

Facial action unit (AU) detection is an important task in affective computing and has attracted extensive attention in the field of computer vision and artificial intelligence. Previous studies for AU detection usually encode complex regional feature representations with manually defined facial landmarks and learn to model the relationships among AUs via graph neural network. Albeit some progress has been achieved, it is still tedious for existing methods to capture the exclusive and concurrent relationships among different combinations of the facial AUs. To circumvent this issue, we proposed a new progressive multi-scale vision transformer (PMVT) to capture the complex relationships among different AUs for the wide range of expressions in a data-driven fashion. PMVT is based on the multi-scale self-attention mechanism that can flexibly attend to a sequence of image patches to encode the critical cues for AUs. Compared with previous AU detection methods, the benefits of PMVT are 2-fold: (i) PMVT does not rely on manually defined facial landmarks to extract the regional representations, and (ii) PMVT is capable of encoding facial regions with adaptive receptive fields, thus facilitating representation of different AU flexibly. Experimental results show that PMVT improves the AU detection accuracy on the popular BP4D and DISFA datasets. Compared with other state-of-the-art AU detection methods, PMVT obtains consistent improvements. Visualization results show PMVT automatically perceives the discriminative facial regions for robust AU detection.

Sign in / Sign up

Export Citation Format

Share Document