scholarly journals Analysis of Error Compensation of Micro Four Axis CNC Milling Machine

Author(s):  
Guowei Mo ◽  
Yan Wang
2014 ◽  
Vol 651-653 ◽  
pp. 616-619 ◽  
Author(s):  
Jin Ying Chen

Through the methods using combination ball-bar with laser interferometer, we carry on accuracy measurement and error compensation of three-axis CNC milling machine. We finally find out the main factors affecting the machining accuracy of machine tool. In the meantime we can improve repeatability of positioning accuracy and the machine's positioning and meet the processing needs by means of the existing error compensation of the CNC machine tools.


2013 ◽  
Vol 455 ◽  
pp. 505-510
Author(s):  
Hong Hai Xu ◽  
Chen Dai

Error detection and compensation technology is an economical and effective method for improving the precision of CNC machine tool. The paper established the geometric errors model of three-axis CNC milling machine based on homogeneous coordinates transformation theory. Error detection is tested by digital ball bar and error compensation software is developed for XK7132 milling machine, the compensation effect is evaluated by a laser interferometer. The results show that the precision of CNC milling machine is improved effectively by the proposed method.


2011 ◽  
Vol 87 ◽  
pp. 82-89
Author(s):  
Potejanasak Potejana ◽  
Chakthong Thongchattu

This research proposes a new application of 3-axis CNC milling machine for polishing the 60 HRC hardness steels. The rotary polishing tools are designed by refer to the end-mill ball nose’s design. The diamond powder are coated in rotary polishing tools by resinoid bonding method and concentrated in 4.4 karat/cm2. The Zig-milling tool paths are used to polish the hardness steel. After polishing, the confocal laser scanning microscope is used to analyze the arithmetic mean surface roughness of the hardness steels. The L12 orthogonal array of the Taguchi’s method is selected to conduct the matrix experiment to determine the optimal polishing process parameters. The diamond grit size and cutting speed of the rotary polishing tools, feed rate and step over of the tool path, the depth of polishing process penetration, and polishing time are used to study. The combination of the optimal level for each factor of the hardness steel polishing process are used to study again in the confirmation experiment. The predicted signal to noise ratio of smaller - the better under optimal condition are calculated by using the data from the experiment. The combination of the optimal level for each factor are used to study again in the confirmation experiment and the result show that polishing time was a dominant parameter for the surface roughness and the next was depth of penetration. The response surface design is then used to build the relationship between the input parameters and output responses. The experimental results show that the integrated approach does indeed find the optimal parameters that result in very good output responses in the rotary polishing tools polished hardness mould steel using CNC milling machine. The mean surface roughness of hardness steel polishing process is improved by the diamond rotary tools with the 3-axis CNC milling machine.


2021 ◽  
Vol 1885 (3) ◽  
pp. 032069
Author(s):  
Xiaoyu Li ◽  
Minbo Wang ◽  
Liangbao Jiang ◽  
Jiaxi Liu ◽  
Jiaming Li ◽  
...  

2021 ◽  
Vol 1068 (1) ◽  
pp. 012017
Author(s):  
Wasis Nugroho ◽  
Damhuji Rifai ◽  
Aminul Hakim Embong ◽  
Kamarul Adnan Abd Aziz ◽  
Ahmad Siraji Embong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document