cutting speed
Recently Published Documents


TOTAL DOCUMENTS

2950
(FIVE YEARS 932)

H-INDEX

40
(FIVE YEARS 9)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 154
Author(s):  
Manuela De Maddis ◽  
Vincenzo Lunetto ◽  
Valentino Razza ◽  
Pasquale Russo Spena

The machining of titanium alloys always raises issues because of their peculiar chemical and physical characteristics as compared to traditional steel or aluminum alloys. A proper selection of parameters and their monitoring during the cutting operation makes it possible to minimize the surface roughness and cutting force. In this experimental study, infrared thermography was used as a control parameter of the surface roughness of Ti6A4V in dry finish turning. An analysis of variance was carried out to determine the effect of the main cutting parameters (cutting speed and feed rate) on the surface roughness and cutting temperature. In the examined range of the machining parameters, cutting speed and feed were found to have a primary effect on the surface roughness of the machined parts. Cutting speed also significantly affected the temperature of the cutting region, while feed was of second order. Higher cutting speeds and intermediate feed values gave the best surface roughness. A regression analysis defined some models to relate the cutting temperature and surface roughness to the machining parameters. Infrared thermography demonstrated that the cutting temperature could be related to roughness.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 590
Author(s):  
Jaroslav Kovalčík ◽  
Petr Mašek ◽  
Jan Malý ◽  
Pavel Kožmín ◽  
Jiří Syrovátka

This article focuses on the development of a mathematical model of a cutting force that is applicable for coated and uncoated cutting tool inserts and aims to enable more accurate calculation of the cutting force. Two common PVD coatings, AlTiN and TiAlCrN, were used. Firstly, a mathematical model of the cutting force based on the specific cutting force and cutting area is proposed. This mathematical model considers the cutting speed and coating correction factor as well as the real cutting edge geometry, i.e., it includes both the straight and rounded parts of the cutting edge. For this proposed model, material constants for C45 steel, which was machined with uncoated inserts, were obtained. Before determining an equation for a coating correction factor and implementing it into the model, experimental cutting force data for coated and uncoated inserts were compared using a paired t-test. The result was that the difference between them was statistically significant. Their percentage difference was found to be up to 4%. The correction factor equation that was obtained and implemented into the mathematical model was applied to compare the calculated and experimental data of the coated inserts, also using a paired t-test. The result was that the difference between them was insignificant. Moreover, their percentage difference was found to be up to 0.6%.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 585
Author(s):  
Marcel Kuruc ◽  
Tomáš Vopát ◽  
Jozef Peterka ◽  
Martin Necpal ◽  
Vladimír Šimna ◽  
...  

The paper deals with the issue of cutting zone and chip compression. The aim was to analyse the microstructure transverse section of the cutting zone on a metallographic cut, due to determined values of chip compression and plastic deformation, which affect the cutting process efficiency. The tested cutting tool material was coated with cemented carbide. The selected workpiece materials were C45 medium carbon steel of ISO grade and 62SiMnCr4 tool steel of ISO (W.Nr. 1.2101) grade. In the experiments, a DMG CTX alpha 500 turning centre was used. The cutting speed and feed were varied, and the depth of the cut was kept constant during the turning. The plastic deformation and chip compression determine the efficiency of the cutting process. The higher compression requires more work to perform the process and, therefore, it requires more energy for doing so. With the increase of the cutting speed, the deformation for C45 steel is decreased. The rapid deformation reduction was observed when the cutting speed was increased from 145 m/min to 180 m/min. Generally, deformation is decreasing with the increase of the feed. Only at a cutting speed of 145 m/min was the deformation elevation observed, when the feed was increased from 0.4 mm to 0.6 mm. During the turning of the 62SiMnCr4 tool steel we observed an error value at a cutting speed of 145 m/min and a feed of 0.4 mm was the middle cutting parameter. However, feed dependence was clear: With an increase of the feed, the plastic deformation was decreasing. This decreasing was more rapid with the increasing of the cutting speed. Besides plastic deformation, there was analysed chip compression as well. With the increasing of the cutting speed, there was a decrease of the chip compression. Due to a lack of information in the area of the chip compression and the plastic deformation in the cutting process, we decided to investigate the cutting zone for the turning of tool steels 62SiMnCr4, which was compared with the reference steel C45. The results could be applied to increase the efficiency of the process and improvement of the surface integrity.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Youngjin Seo ◽  
Dongkyoung Lee ◽  
Sukhoon Pyo

AbstractLaser cutting of intrusive rocks, including granite, gabbro, and diorite, is carried out in order to assess the cut characteristics through geometrical measurements, such as kerf width, melting width, and penetration depth. The absorption rate for each specimen at the wavelength of 1064 nm is measured using a spectrophotometer. A multimode fiber laser is used in this study with the power of 9 kW and different cutting speeds. Furthermore, nitrogen gas at 13 bar is applied as the assistant gas in order to remove the melted material effectively. As a result of the experiment, the relationship between the cutting speed and geometrical measurements is investigated. Furthermore, variations of penetration depth are performed in accordance with the number of laser cuts. In addition, through energy dispersive X-ray (EDX) element mapping, minerals that comprise the rocks are classified and characterized. Subsequently, the changes in the microstructure and chemical composition of each specimen, before and after laser cutting, are compared using scanning electron microscope (SEM) and EDX analyses. Experimental results demonstrate that the cutting characteristics vary, depending on the types of minerals that make up the rock. Based on a series of tests, it is identified that volume energy of more than 3.06E + 13 $$\mathrm{J}/{\mathrm{m}}^{3}$$ J / m 3 is required to fully cut intrusive rocks that have a thickness of 25 mm.


2022 ◽  
Author(s):  
Jingwei Duan ◽  
Ping Zou ◽  
Shiyu Wei ◽  
Rui Fang ◽  
Liting Fang

Abstract To improve the machining performance of different processing materials, a three-excitation ultrasonic spatial vibration-assisted turning system is proposed, which realizes the non-unity of the plane where the cutting trajectory of the tool is located. The influence and formation law of three-excitation ultrasonic spatial vibration-assisted turning on the surface roughness of the workpiece under different vibration parameters (amplitude) and machining parameters (cutting speed, cutting depth, and feed) were analyzed by response surface methodology. The results show that in terms of vibration parameters, the influence of ultrasonic vibration applied in the horizontal direction on surface roughness is significantly greater than that of ultrasonic vibration applied in the vertical direction, while the feed has the greatest influence on surface roughness, followed by cutting speed. The surface roughness of common turning, one-dimensional ultrasonic vibration-assisted turning, ultrasonic elliptical vibration-assisted turning, and three-excitation ultrasonic spatial vibration-assisted turning were theoretically analyzed and experimentally compared. The results show that compared with the other three turning methods, the three-excitation ultrasonic spatial vibration-assisted turning can obtain a lower surface roughness and have good machinability.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsana Aqilah Ahmad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron

Purpose The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid. Design/methodology/approach The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism. Findings Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool Originality/value A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.


JOM ◽  
2022 ◽  
Author(s):  
Ryan M. Khawarizmi ◽  
Jiawei Lu ◽  
Dinh S. Nguyen ◽  
Thomas R. Bieler ◽  
Patrick Kwon

2022 ◽  
Vol 12 (1) ◽  
pp. 495
Author(s):  
Kwan Kim ◽  
Moo-Keun Song ◽  
Su-Jin Lee ◽  
Dongsig Shin ◽  
Jeong Suh ◽  
...  

With nuclear power plants worldwide approaching their design lifespans, plans for decommissioning nuclear power plants are increasing, and interest in decommissioning technology is growing. Laser cutting, which is suitable for high-speed cutting in underwater environments and is amenable to remote control and automation, has attracted considerable interest. In this study, the effects of laser cutting were analyzed with respect to relevant parameters to achieve high-quality underwater laser cutting for the decommissioning of nuclear power plants. The kerf width, drag line, and roughness of the specimens during the high-power laser cutting of 50 mm-thick stainless steel in an underwater environment were analyzed based on key parameters (focal position, laser power, and cutting speed) to determine the conditions for satisfactory cutting surface quality. The results indicated that underwater laser cutting with a speed of up to 130 mm/min was possible at a focal position of 30 mm and a laser power of 9 kW; however, the best-quality cutting surface was obtained at a cutting speed of 30 mm/min.


2022 ◽  
Author(s):  
D. Podashev

Abstract. The article is devoted to the study of the wear intensity of elastic polymer-abrasive circles when processing the surfaces of parts made of high-strength aluminum alloys. Empirical dependencies of wear on cutting speed and tool deformation are obtained, on the basis of which method of tool deformation correction with long-term, continuous surface treatment is proposed. In practice, such a procedure is necessary due to the loss of process performance that occurs due to the reduction of tool deformation due to wear. The proposed technique allows to effectively control the finishing process as the tool is worn out.


2022 ◽  
Vol 16 (1) ◽  
pp. 87-94
Author(s):  
Shinichi Ninomiya ◽  
Satoshi Nagakura ◽  
Fumio Koga ◽  
Yoji Yamada ◽  
Manabu Iwai ◽  
...  

We propose ultrasonic rotary cutting, in which ultrasonic vibrations are imparted to a rotating cemented carbide cylindrical tool to cut hardened steel to reduce the cutting resistance and improve the properties of the machined surface, and investigate the machining characteristics. Machining experiments were conducted under dry and wet conditions to verify the effects of the ultrasonic vibrations. The surface produced via ultrasonic rotary cutting was intermittently machined, which is characteristic of ultrasonic cutting. In dry machining, the cutting resistance was reduced by approximately 20%, and the surface roughness of the machined surface was reduced by approximately 30% when the cutting speed was below the critical speed. We also demonstrated that the surface roughness was improved by ultrasonic vibrations when the cutting speed was equal to or above the critical speed. A similar tendency was observed in wet machining with longer cutting lengths. We then applied ultrasonic rotary cutting to machine a straight R groove in hardened steel and showed that the cutting resistance was reduced, and the tool engagement was improved.


Sign in / Sign up

Export Citation Format

Share Document