A novel surface-integral-equation formulation for efficient and accurate electromagnetic analyses of near-zero-index structures

2021 ◽  
Author(s):  
Hande Ibili ◽  
Yesim Koyaz ◽  
Utku Ozmu ◽  
Bariscan Karaosmanoglu ◽  
Ozgur Ergul

Abstract We consider accurate and iteratively efficient solutions of electromagnetic problems involving homogenized near-zero-index (NZI) bodies using surface-integral-equation formulations in frequency domain. NZI structures can be practically useful in a plethora of optical applications, as they possess near-zero permittivity and/or permeability values that cannot be found in nature. Hence, numerical simulations are of utmost importance for rigorous design and analyses of NZI structures. Unfortunately, small values of electromagnetic parameters bring computational challenges in numerical solutions of homogeneous models. Conventional formulations available in the literature encounter stability issues that make them inaccurate and/or inefficient as permittivity and/or permeability approach zero. We propose a novel formulation that involves a well-balanced combination of operators and that can provide both accurate and efficient solutions of all NZI cases. Numerical results are presented to demonstrate the superior properties of the developed formulation in comparison to the conventional ones.

2020 ◽  
Author(s):  
John Stevenson

This article studies numerically the electromagnetic scattering properties of three dimensional (3D), arbitrary shaped dielectric resonator antennas which are composed of single and multi-layered (composite) dielectric materials. Using the equivalence principle and the integral equation techniques, we first derive a surface integral equation (SIE) formulation which produces well-conditioned matrix equation. We then develop an algorithm to speed up the matrix-vector multiplications by employing the well-known method of moments (MoM) and the multilevel fast multipole method (MLFMM) on personal computer (PC) clusters. To solve the obtained integral equations, we apply a Galerkin scheme and choose the basis and testing functions as Rao-Wilton-Glisson (RWG) defined on planar patches. Finally, we present some 3D numerical examples to demonstrate the validity and accuracy of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document