electromagnetic problems
Recently Published Documents


TOTAL DOCUMENTS

622
(FIVE YEARS 85)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 11619
Author(s):  
Ignacio Martínez-Fernández ◽  
Adrian Amor-Martin ◽  
Luis E. Garcia-Castillo

In this paper, we follow the Test-Driven Development (TDD) paradigm in the development of an in-house code to allow for the finite element analysis of finite periodic type electromagnetic structures (e.g., antenna arrays, metamaterials, and several relevant electromagnetic problems). We use unit and integration tests, system tests (using the Method of Manufactured Solutions—MMS), and application tests (smoke, performance, and validation tests) to increase the reliability of the code and to shorten its development cycle. We apply substructuring techniques based on the definition of a unit cell to benefit from the repeatability of the problem and speed up the computations. Specifically, we propose an approach to model the problem using only one type of Schur complement which has advantages concerning other substructuring techniques.


2021 ◽  
Author(s):  
Shiva Hayati Raad ◽  
Zahra Atlasbaf

The integral equation (IE) method is one of the efficient approaches for solving electromagnetic problems, where dyadic Green’s function (DGF) plays an important role as the Kernel of the integrals. In general, a layered medium with planar, cylindrical, or spherical geometry can be used to model different biomedical media such as human skin, body, or head. Therefore, in this chapter, different approaches for the derivation of Green’s function for these structures will be introduced. Due to the recent great interest in two-dimensional (2D) materials, the chapter will also discuss the generalization of the technique to the same structures with interfaces made of isotropic and anisotropic surface impedances. To this end, general formulas for the dyadic Green’s function of the aforementioned structures are extracted based on the scattering superposition method by considering field and source points in the arbitrary locations. Apparently, by setting the surface conductivity of the interfaces equal to zero, the formulations will turn into the associated problem with dielectric boundaries. This section will also aid in the design of various biomedical devices such as sensors, cloaks, and spectrometers, with improved functionality. Finally, the Purcell factor of a dipole emitter in the presence of the layered structures will be discussed as another biomedical application of the formulation.


2021 ◽  
Vol 4 (12) ◽  
pp. 2170030
Author(s):  
Gaojia Zhu ◽  
Longnv Li ◽  
Weinong Fu ◽  
Ming Xue ◽  
Tao Liu ◽  
...  

2021 ◽  
Author(s):  
Hande Ibili ◽  
Yesim Koyaz ◽  
Utku Ozmu ◽  
Bariscan Karaosmanoglu ◽  
Ozgur Ergul

Abstract We consider accurate and iteratively efficient solutions of electromagnetic problems involving homogenized near-zero-index (NZI) bodies using surface-integral-equation formulations in frequency domain. NZI structures can be practically useful in a plethora of optical applications, as they possess near-zero permittivity and/or permeability values that cannot be found in nature. Hence, numerical simulations are of utmost importance for rigorous design and analyses of NZI structures. Unfortunately, small values of electromagnetic parameters bring computational challenges in numerical solutions of homogeneous models. Conventional formulations available in the literature encounter stability issues that make them inaccurate and/or inefficient as permittivity and/or permeability approach zero. We propose a novel formulation that involves a well-balanced combination of operators and that can provide both accurate and efficient solutions of all NZI cases. Numerical results are presented to demonstrate the superior properties of the developed formulation in comparison to the conventional ones.


2021 ◽  
pp. 1-22
Author(s):  
Qiang Ren ◽  
Yinpeng Wang ◽  
Yongzhong Li ◽  
Shutong Qi

2021 ◽  
pp. 23-41
Author(s):  
Qiang Ren ◽  
Yinpeng Wang ◽  
Yongzhong Li ◽  
Shutong Qi

Author(s):  
Marina G. Persova ◽  
Yuri G. Soloveichik ◽  
Denis V. Vagin ◽  
Dmitry S. Kiselev ◽  
Anastasia P. Sivenkova ◽  
...  

2021 ◽  
pp. 2100216
Author(s):  
Gaojia Zhu ◽  
Longnv Li ◽  
Weinong Fu ◽  
Ming Xue ◽  
Tao Liu ◽  
...  

Author(s):  
Denis Zolotariov ◽  

The approach for building cloud-ready fault-tolerant calculations by approximating functions method, which is an analytical-numerical part of Volterra integral equation method for solving 1D+T nonlinear electromagnetic problems, is presented. The solving process of the original algorithm of the method is modified: it is broken down into the sequential chain of stages with a fixed number of sequential or parallel steps, each of which is built in a fault-tolerant manner and saves execution results in fault-tolerant storage for high availability. This economizes RAM and other computer resources and does not damage the calculated results in the case of a failure, and allows stopping and starting the calculations easily after manual or accidental shutdown. Also, the proposed algorithm has self-healing and data deduplication for cases of corrupted saved results. The presented approach is universal and does not depend on the type of medium or the initial signal. Also, it does not violate the natural description of non-stationary and nonlinear features, the unified definition of the inner and outer problems, as well as the inclusion of the initial and boundary conditions in the same equation as the original approximating functions method. The developed approach stress-tested on the known problems, stability checked and errors compared.


Author(s):  
Denis Zolotariov ◽  

Abstract The approach for building cloud-ready fault-tolerant calculations by approximating functions method, which is an analytical-numerical part of Volterra integral equation method for solving 1D+T nonlinear electromagnetic problems, is presented. The solving process of the original algorithm of the method is modified: it is broken down into the sequential chain of stages with a fixed number of sequential or parallel steps, each of which is built in a fault-tolerant manner and saves execution results in fault-tolerant storage for high availability. This economizes RAM and other computer resources and does not damage the calculated results in the case of a failure, and allows stopping and starting the calculations easily after manual or accidental shutdown. Also, the proposed algorithm has self-healing and data deduplication for cases of corrupted saved results. The presented approach is universal and does not depend on the type of medium or the initial signal. Also, it does not violate the natural description of non-stationary and nonlinear features, the unified definition of the inner and outer problems, as well as the inclusion of the initial and boundary conditions in the same equation as the original approximating functions method. The developed approach stress-tested on the known problems, stability checked and errors compared.


Sign in / Sign up

Export Citation Format

Share Document