On the derivation of a nonlinear generalized Langevin equation

Author(s):  
Loris Di Cairano

Abstract We recast the Zwanzig's derivation of a non linear generalized Langevin equation (GLE) for a heavy particle interacting with a heat bath in a more general framework showing that it is necessary to readjust the Zwanzig's definitions of the kernel matrix and noise vector in the GLE in order to be able performing consistently the continuum limit. As shown by Zwanzig, the non linear feature of the resulting GLE is due to the non linear dependence of the equilibrium map by the heavy particle variables. Such an equilibrium map represents the global equilibrium configuration of the heat bath particles for a fixed (instantaneous) configuration of the system. Following the same derivation of the GLE, we show that a deeper investigation of the equilibrium map, considered in the Zwanzig's Hamiltonian, is necessary. Moreover, we discuss how to get an equilibrium map given a general interaction potential. Finally, we provide a renormalization procedure which allows to divide the dependence of the equilibrium map by coupling coefficient from the dependence by the system variables yielding a more rigorous mathematical structure of the non linear GLE.

2017 ◽  
Vol 31 (27) ◽  
pp. 1750189
Author(s):  
Malay Bandyopadhyay ◽  
A. M. Jayannavar

In this work, we derive the Langevin equation (LE) of a classical spin interacting with a heat bath through momentum variables, starting from the fully dynamical Hamiltonian description. The derived LE with anomalous dissipation is analyzed in detail. The obtained LE is non-Markovian with multiplicative noise terms. The concomitant dissipative terms obey the fluctuation–dissipation theorem. The Markovian limit correctly produces the Kubo and Hashitsume equation. The perturbative treatment of our equations produces the Landau–Lifshitz equation and the Seshadri–Lindenberg equation. Then we derive the Fokker–Planck equation corresponding to LE and the concept of equilibrium probability distribution is analyzed.


2009 ◽  
Vol 388 (17) ◽  
pp. 3629-3635 ◽  
Author(s):  
Renat Yulmetyev ◽  
Ramil Khusnutdinoff ◽  
Timur Tezel ◽  
Yildiz Iravul ◽  
Bekir Tuzel ◽  
...  

2017 ◽  
Vol E100.D (9) ◽  
pp. 2249-2252 ◽  
Author(s):  
Seongkyu MUN ◽  
Minkyu SHIN ◽  
Suwon SHON ◽  
Wooil KIM ◽  
David K. HAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document