hamiltonian description
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 3)

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1960
Author(s):  
Federico Zadra ◽  
Alessandro Bravetti ◽  
Marcello Seri

Starting from a contact Hamiltonian description of Liénard systems, we introduce a new family of explicit geometric integrators for these nonlinear dynamical systems. Focusing on the paradigmatic example of the van der Pol oscillator, we demonstrate that these integrators are particularly stable and preserve the qualitative features of the dynamics, even for relatively large values of the time step and in the stiff regime.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1430
Author(s):  
Fernando Barbero ◽  
Marc Basquens ◽  
Valle Varo ◽  
Eduardo J. S. Villaseñor

The Hamiltonian description of mechanical or field models defined by singular Lagrangians plays a central role in physics. A number of methods are known for this purpose, the most popular of them being the one developed by Dirac. Here, we discuss other approaches to this problem that rely on the direct use of the equations of motion (and the tangency requirements characteristic of the Gotay, Nester and Hinds method), or are formulated in the tangent bundle of the configuration space. Owing to its interesting relation with general relativity we use a concrete example as a test bed: an extension of the Pontryagin and Husain–Kuchař actions to four dimensional manifolds with boundary.


2021 ◽  
Author(s):  
Colin Peter Stark ◽  
Gavin John Stark

Abstract. The rate of erosion of a geomorphic surface depends on its local gradient and on the material fluxes over it. Since both quantities are functions of the shape of the catchment surface, this dependence constitutes a mathematical straitjacket, in the sense that – subject to simplifying assumptions about the erosion process, and absent variations in external forcing and erodibility – the rate of change of surface geometry is solely a function of surface geometry. Here we demonstrate how to use this geometric self-constraint to convert an erosion model into its equivalent Hamiltonian, and explore the implications of having a Hamiltonian description of the erosion process. To achieve this conversion, we recognize that the rate of erosion defines the velocity of surface motion in its orthogonal direction, and we express this rate in its reciprocal form as the surface-normal slowness. By rewriting surface tilt in terms of normal slowness components, and by deploying a substitution developed in geometric mechanics, we extract what is known as the fundamental metric function of the model phase space; its square is the Hamiltonian. Such a Hamiltonian provides several new ways of solving for the evolution of an erosion surface: here we use it to derive Hamilton's ray tracing equations, which describe both the velocity of a surface point and the rate of change of the surface-normal slowness at that point. In this context, erosion involves two distinct directions: (i) the surface-normal direction, which points subvertically downwards, and (ii) the erosion ray direction, which points upstream at a generally small angle to horizontal with a sign controlled by the scaling of erosion with slope. If the model erosion rate scales faster than linearly with gradient, the rays point obliquely upwards; but if erosion scales sublinearly with gradient, the rays point obliquely downwards. Analysis of the Hamiltonian shows that these rays carry boundary-condition information upstream, and that they are geodesics, meaning that erosion takes the path of least erosion time. This constitutes a definition of the variational principle governing landscape evolution. In contrast with previous studies of network self-organization, neither energy nor energy dissipation is invoked in this variational principle, only geometry.


Author(s):  
Andrea Addazi ◽  
Pisin Chen ◽  
Filippo Fabrocini ◽  
Chris Fields ◽  
Enrico Greco ◽  
...  

We show that a generalized version of the holographic principle can be derived from the Hamiltonian description of information flow within a quantum system that maintains a separable state. We then show that this generalized holographic principle entails a general principle of gauge invariance. When this is realized in an ambient Lorentzian space-time, gauge invariance under the Poincaré group is immediately achieved. We apply this pathway to retrieve the action of gravity. The latter is cast à la Wilczek through a similar formulation derived by MacDowell and Mansouri, which involves the representation theory of the Lie groups SO(3,2) and SO(4,1).


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Yannis Antonenas ◽  
Giorgos Anastassiou ◽  
Yannis Kominis

Charged particle motion in axisymmetric toroidal magnetic fields is analysed within the context of the canonical Hamiltonian guiding centre theory. A canonical transformation to variables measuring the drift orbit deviation from a magnetic field line is introduced and an analytical transformation to action-angle variables is obtained, under a zero drift width approximation. The latter is used to provide compact formulas for the orbital spectrum of the drift motion, namely the bounce/transit frequencies as well as the bounce/transit averaged toroidal precession and gyration frequencies. These formulas are shown to have a remarkable agreement with numerically calculated full drift width frequencies and significant differences from standard analytical formulas based on a pendulum-like Hamiltonian description. The analytical knowledge of the orbital spectrum is crucial for the formulation of particle resonance conditions with symmetry-breaking perturbations and the study of the resulting particle, energy and momentum transport.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Francesco Bascone ◽  
Franco Pezzella ◽  
Patrizia Vitale

Abstract Poisson-Lie T-duality of the Wess-Zumino-Witten (WZW) model having the group manifold of SU(2) as target space is investigated. The whole construction relies on the deformation of the affine current algebra of the model, the semi-direct sum $$ \mathfrak{su}(2)\left(\mathrm{\mathbb{R}}\right)\overset{\cdot }{\oplus}\mathfrak{a} $$ su 2 ℝ ⊕ ⋅ a , to the fully semisimple Kac-Moody algebra $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right)\left(\mathrm{\mathbb{R}}\right) $$ sl 2 ℂ ℝ . A two-parameter family of models with SL(2, ℂ) as target phase space is obtained so that Poisson-Lie T-duality is realised as an O(3, 3) rotation in the phase space. The dual family shares the same phase space but its configuration space is SB(2, ℂ), the Poisson-Lie dual of the group SU(2). A parent action with doubled degrees of freedom on SL(2, ℂ) is defined, together with its Hamiltonian description.


Author(s):  
Ivan Favero

Light exerts mechanical action on matter through various mechanisms, the most famous being radiation pressure, with the associated picture of a photon bouncing on a perfectly reflective movable mirror and transferring twice its momentum. But still today, unambiguously observing the effects of radiation pressure remains a challenge. In the quantum domain, the radiation pressure interaction between a moving mirror and light stored in a cavity accepts a simple Hamiltonian formulation. But this Hamiltonian description is sometimes oversimplified and underestimates or misses other mechanical effects of light accompanying radiation pressure in experiments. In this chapter, we will not only address radiation pressure but also other relevant optical forces such as the optical gradient force, electrostriction, or the photothermal and optoelectronic forces, which are key in micro- and nanoscale devices and must all be controlled on an equal footing to fully harness the technological and scientific potential of miniature optomechanical systems.


Sign in / Sign up

Export Citation Format

Share Document