Phase space formalism for the partition function and averages

Author(s):  
Phil Attard
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Kazi Ashraful Alam ◽  
Mir Mehedi Faruk

Entropy bound for the photon gas in a noncommutative (NC) spacetime where phase space is with compact spatial momentum space, previously studied by Nozari et al., has been reexamined with the correct distribution function. While Nozari et al. have employed Maxwell-Boltzmann distribution function to investigate thermodynamic properties of photon gas, we have employed the correct distribution function, that is, Bose-Einstein distribution function. No such entropy bound is observed if Bose-Einstein distribution is employed to solve the partition function. As a result, the reported analogy between thermodynamics of photon gas in such NC spacetime and Bekenstein-Hawking entropy of black holes should be disregarded.


1992 ◽  
Vol 07 (03) ◽  
pp. 219-224 ◽  
Author(s):  
MARTIN LAVELLE ◽  
DAVID McMULLAN

Simple arguments are presented to show that the standard Faddeev-Popov formulations of the temporal, light-cone and Fock-Schwinger gauges are not unitary. We also demonstrate that the phase space formalism of these theories provide three counterexamples to the Fradkin-Vilkovisky theorem.


2016 ◽  
Vol 34 (6) ◽  
pp. 557-564 ◽  
Author(s):  
Rudolf A. Treumann ◽  
Wolfgang Baumjohann

Abstract. It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the corresponding nonextensive statistical mechanics.


1997 ◽  
Vol 56 (12) ◽  
pp. 7674-7691 ◽  
Author(s):  
John L. Friedman ◽  
Jorma Louko ◽  
Stephen N. Winters-Hilt

Sign in / Sign up

Export Citation Format

Share Document