Roscovitine Treatment Improves Synchronization of Donor Cell Cycle in G0/G1 Stage and In Vitro Development of Handmade Cloned Buffalo (Bubalus bubalis) Embryos

2012 ◽  
Vol 14 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Naresh L. Selokar ◽  
Monika Saini ◽  
Mushariffa Muzaffer ◽  
G. Krishnakanth ◽  
Ambika P. Saha ◽  
...  
2016 ◽  
Vol 143 ◽  
pp. 1-7 ◽  
Author(s):  
V. Praveen Chakravarthi ◽  
S.S.R. Kona ◽  
A.V.N. Siva Kumar ◽  
M. Bhaskara ◽  
V.H. Rao

2015 ◽  
Vol 124 ◽  
pp. 76-80 ◽  
Author(s):  
Yi Min Wang ◽  
Xiang Bin Ding ◽  
Xin Feng Liu ◽  
Yong Zhang

2017 ◽  
Author(s):  
◽  
Bethany Rae Mordhorst

Gene edited pigs serve as excellent models for biomedicine and agriculture. Currently, the most efficient way to make a reliably-edited transgenic animal is through somatic cell nuclear transfer (SCNT) also known as cloning. This process involves using cells from a donor (which may have been gene edited) that are typically grown in culture and using their nuclear content to reconstruct a new zygote. To do this, the cell may be placed in the perivitelline space of an enucleated oocyte and activated artificially by a calcium-containing media and electrical pulse waves. While it is remarkable that this process works, it is highly inefficient. In pigs the success of transferred embryos becoming live born piglets is only 1-3%. The creation of more cloned pigs enables further study for the benefit of both A) biomedicine in the development of prognosis and treatments and B) agriculture, whether it be for disease resistance, feed efficiency, gas emissions, etc. Two decades of research has not drastically improved the cloning efficiency of most mammals. One of the main impediments to successful cloning is thought to be due to inefficient nuclear reprogramming and remodeling of the donor cell nucleus. In the following chapters we detail our efforts to improve nuclear reprogramming of porcine fetal fibroblasts by altering the metabolism to be more blastomere-like in nature. We used two methods to alter metabolism 1) pharmaceutical agents and 2) hypoxia. After treating donor cells both methods were used in nuclear transfer. Pharmaceutical agents did not improve in vitro development of gestational survival of clones. Hypoxia did improve in vitro development and we are currently awaiting results of gestation.


animal ◽  
2008 ◽  
Vol 2 (10) ◽  
pp. 1486-1490 ◽  
Author(s):  
K. Saikhun ◽  
T. Faisaikarm ◽  
Z. Ming ◽  
K.H. Lu ◽  
Y. Kitiyanant

2016 ◽  
Vol 28 (2) ◽  
pp. 138
Author(s):  
H.-Y. Zhu ◽  
L. Jin ◽  
Q. Guo ◽  
Y.-C. Zhang ◽  
X.-C. Li ◽  
...  

We use MGCD 0103 to test whether the treatment with this novel histone deacetylase inhibitor improves the in vitro development of porcine somatic cell NT (SCNT) embryos. Matured eggs were cultured in medium supplemented with 0.05 M sucrose and 0.4 μg mL–1 demecolcine for 1 h. Treated eggs with a protruding membrane were transferred to medium supplemented with 5 μg mL–1 cytochalasin B and 0.4 μg mL–1 demecolcine. Protrusions were then removed by aspirating with a 15-μm inner diameter glass pipette. A single donor cell was inserted into the perivitelline space of each egg and electrically fused using 2 direct pulses of 150 V mm–1 for 50 μs in 0.28 M mannitol. Fused eggs cultured for 1 h were activated by 2 direct pulses of 100 V mm–1 for 20 μs and incubated with 2 mM 6-DMAP for 4 h. Subsequently, the cloned embryos were cultured in medium for 7 days at 38.5°C in 5% CO2 humidified air. In Experiment 1, after activation and treatment with 6-DMAP for 4 h, the SCNT embryos were cultured in medium supplemented with 0, 0.2, 2, or 20 μM MGCD 0103 for 24 h and then transferred to medium without MGCD 0103. In Experiment 2, SCNT embryos were cultured in medium supplemented with 0.2 μM MGCD 0103 for 0, 6, 24, or 48 h and then transferred to medium without MGCD 0103. As shown in Table 1, development to the blastocyst stage increased in SCNT embryos treated with 0.2 μM MGCD 0103 compared with the control or groups treated with 2 or 20 μM MGCD 0103 (25.51 v. 10.74, 3.53, 3.20%, respectively; P < 0.05). As shown in Table 1, treatment for 6 h with 0.2 μM MGCD 0103 significantly improved the rate of blastocyst formation compared with the control or groups treated for 24 or 48 h (21.17 v. 10.48, 19.23, 10.20%, respectively; P < 0.05). Our results suggested that 0.2 μM MGCD 0103 treatment for 6 h can improve in vitro developmental competence of porcine SCNT embryos. Table 1.In vitro development of pig SCNT embryos with different concentrations of MGCD 0103 for 24 h, and with 0.2 μM MGCD 0103 for different durations


Sign in / Sign up

Export Citation Format

Share Document