nuclear reprogramming
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 26)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Vol 24 ◽  
pp. 54-66
Author(s):  
Mingtian Deng ◽  
Yongjie Wan ◽  
Baobao Chen ◽  
Xiangpeng Dai ◽  
Zifei Liu ◽  
...  

Author(s):  
Daniela Bebbere ◽  
Susanne E. Ulbrich ◽  
Katrin Giller ◽  
Valeri Zakhartchenko ◽  
Horst-Dieter Reichenbach ◽  
...  

Somatic cell nuclear transfer (SCNT) is a key technology with broad applications that range from production of cloned farm animals to derivation of patient-matched stem cells or production of humanized animal organs for xenotransplantation. However, effects of aberrant epigenetic reprogramming on gene expression compromise cell and organ phenotype, resulting in low success rate of SCNT. Standard SCNT procedures include enucleation of recipient oocytes before the nuclear donor cell is introduced. Enucleation removes not only the spindle apparatus and chromosomes of the oocyte but also the perinuclear, mitochondria rich, ooplasm. Here, we use a Bos taurus SCNT model with in vitro fertilized (IVF) and in vivo conceived controls to demonstrate a ∼50% reduction in mitochondrial DNA (mtDNA) in the liver and skeletal muscle, but not the brain, of SCNT fetuses at day 80 of gestation. In the muscle, we also observed significantly reduced transcript abundances of mtDNA-encoded subunits of the respiratory chain. Importantly, mtDNA content and mtDNA transcript abundances correlate with hepatomegaly and muscle hypertrophy of SCNT fetuses. Expression of selected nuclear-encoded genes pivotal for mtDNA replication was similar to controls, arguing against an indirect epigenetic nuclear reprogramming effect on mtDNA amount. We conclude that mtDNA depletion is a major signature of perturbations after SCNT. We further propose that mitochondrial perturbation in interaction with incomplete nuclear reprogramming drives abnormal epigenetic features and correlated phenotypes, a concept supported by previously reported effects of mtDNA depletion on the epigenome and the pleiotropic phenotypic effects of mtDNA depletion in humans. This provides a novel perspective on the reprogramming process and opens new avenues to improve SCNT protocols for healthy embryo and tissue development.


Author(s):  
Pantu Kumar Roy ◽  
Ahmad Yar Qamar ◽  
Bereket Molla Tanga ◽  
Xun Fang ◽  
Ghangyong Kim ◽  
...  

The objective of this study was to investigate the effect of milrinone supplementation as a phosphodiesterase 3A inhibitor during in vitro maturation (IVM) to coordinate the cytoplasmic and nuclear maturation of porcine oocytes and subsequent development of porcine cloned embryos. Brilliant cresyl blue (BCB)-stained (BCB +) oocytes, classified as well-developed, and BCB− oocytes were used in parthenogenesis (PA) and cloning, and their preimplantation development was compared. In PA embryos, BCB + oocytes had significantly higher rates of development than BCB− oocytes in terms of maturation (87.5 vs. 71.3%), cleavage (88.6 vs. 76.3%), and blastocyst development (34.3 vs. 25.3%) and also had higher cell numbers (46.9 vs. 38.9%), respectively (p < 0.05). In cloned embryos, the BCB + group also had a significantly higher blastocyst formation rate than the BCB− group (30.6 vs. 20.1%; p < 0.05). Supplementation with 75 μM milrinone during IVM of BCB− oocytes showed improvement in maturation and blastocyst development rates, which may be due to the coordinated maturation of the cytoplasm with the nucleus as an effect of milrinone. Moreover, the analysis of nuclear reprogramming via the examination of the expression levels of the reprogramming-related genes POU5F1, DPPA2, and NDP52IL in milrinone-supplemented BCB− oocytes showed higher expression levels than that in non-treated BCB− oocytes. These findings demonstrate that milrinone is useful in improving developmental competence in less competent oocytes during IVM and for proper nuclear reprogramming in the production of porcine cloned embryos by coordinating cytoplasmic and nucleus maturation.


Reproduction ◽  
2021 ◽  
Author(s):  
Pasqualino Loi ◽  
Luca Palazzese ◽  
Pier Augusto Scapolo ◽  
Josef Fulka ◽  
Helena Fulka ◽  
...  

The birth of Dolly through somatic cell nuclear transfer (SCNT) was a major scientific breakthrough of the last century. Yet, while significant progress has been achieved across the technics required to reconstruct and in vitro culture nuclear transfer embryos, SCNT outcomes in terms of offspring production rates are still limited. Here we provide a snapshot of the practical application of SCNT in farm animals and pets. Moreover, we suggest a path to improve SCNT through alternative strategies inspired by the physiological reprogramming in male and female gametes in preparation for the totipotency required after fertilization. Almost all papers on SCNT focused on nuclear reprogramming in the somatic cells after nuclear transfer. We believe that this is misleading, and even if it works sometimes, it does so in an uncontrolled way. Physiologically, the oocyte cytoplasm deploys nuclear reprogramming machinery specifically designed to address the male chromosome, the maternal alleles are prepared for totipotency earlier, during oocyte nuclear maturation. Significant advances have been made in remodeling somatic nuclei in vitro through the expression of protamines, thanks to a plethora of data available on spermatozoa epigenetic modifications. Missing are the data on large-scale nuclear reprogramming of the oocyte chromosomes. The main message our article conveys is that the next generation nuclear reprogramming strategies should be guided by insights from in-depth studies on epigenetic modifications in the gametes in preparation for fertilization.


2020 ◽  
Vol 22 (1) ◽  
pp. 236
Author(s):  
Kilian Simmet ◽  
Eckhard Wolf ◽  
Valeri Zakhartchenko

The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe—based on the growing number of reports published during recent decades—in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.


2020 ◽  
Vol 72 (6) ◽  
pp. 797-805
Author(s):  
Cristina Villafranca ◽  
Melissa R. Makris ◽  
Maria Jesus Garrido Bauerle ◽  
Roderick V. Jensen ◽  
Willard H. Eyestone

2020 ◽  
Vol 154 ◽  
pp. 43-52
Author(s):  
Yile Wang ◽  
Yanhe Li ◽  
Deji Luan ◽  
Jian Kang ◽  
Rongjun He ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rafael Vilar Sampaio ◽  
Juliano Rodrigues Sangalli ◽  
Tiago Henrique Camara De Bem ◽  
Dewison Ricardo Ambrizi ◽  
Maite del Collado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document