scholarly journals Downregulation of DNA Methyltransferase 1 in Zona-Free Cloned Buffalo (Bubalus bubalis) Embryos by Small Interefering RNA Improves In Vitro Development But Does Not Alter DNA Methylation Level

2015 ◽  
Vol 17 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Naresh L. Selokar ◽  
Monika Saini ◽  
Himanshu Agrawal ◽  
Prabhat Palta ◽  
Manmohan S. Chauhan ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 128
Author(s):  
K. Yamanaka ◽  
M. Sakatani ◽  
M. Takahashi

Reprogramming of epigenetic modification is a necessary process during mammalian development, which is aberrant in somatic cell nuclear transfer (SCNT) embryos. Previous study has demonstrated that an abnormal state of genomic hypermethylation is consistently observed in SCNT embryos (Kang et al. 2001 Nat. Genet. 28, 173–177). On the other hand, small interfering RNAs (siRNAs) are identified molecules shown to silence genes via targeted mRNA degradation and are widely used in molecular and cellar research (Hannon GJ 2002 Nature 418, 244–251). Thus, knockdown of the expression of genes related to epigenetic modifications by siRNA may be used to alter epigenetic modifications in SCNT embryos. In the present study, we investigated the effects of knockdown of DNA methyltransferase 1 by siRNA on in vitro development, gene expression, and DNA methylation state of bovine SCNT embryos. In vitro matured oocytes were enucleated, fused with bovine fibroblasts and then activated, the resultant SCNT embryos were divided into three groups; control, non-treated group; sham-NT, H2O injected group; and siRNA-NT, siRNA injected group. The siRNA corresponding to DNA methyltransferases 1, which is the enzyme responsible for maintaining DNA methylation patterns, was designed and injected into the cytoplasm of SCNT embryos. All embryos were cultured in CR1aa + 5% FCS and assessed the rates of cleavage and blastocyst formation on Days 2 and 8, respectively. All data were obtained from more than 5 replicates. Developmental percentage data were analyzed by chi-square tests (P < 0.05). Other data were analyzed with ANOVA followed by Fisher’s protected least significant difference (P < 0.05). The developmental rate to blastcysts in siRNA-NT group (38.7%; 111/287) was significantly higher (P < 0.05) than those of control (28.8%; 121/420) and sham groups (30.5%; 92/302). To estimate the effect of siRNA injection on gene expression, we sampled embryos at 48 h after culture and measured the amount of DNA methyltransferase 1 mRNA expression by real-time PCR. The amount of DNA methyltransferase 1 mRNA was significantly less (P < 0.05) than those of control and sham-NT groups. Finally, the levels of DNA methylation at satellite I region were analyzed by COBRA method in blastosyst stage embryos. The level of DNA methylation of blastocysts in siRNA-NT groups was significantly less (P < 0.05) than those of control and sham-NT and also similar to that of IVF blastocysts. In the present study, we showed that gene silencing of DNA methyltransferase 1 by siRNA enhanced the in vitro development of SCNT embryos and decreased the level of DNA methylation which was equivalent to IVF embryos. These findings suggest that knockdown of specific genes related epigenetic modifications by RNA interference may alter abnormal epigenetic reprogramming with the resultant improvement for subsequent development of SCNT embryos.



2014 ◽  
Vol 60 (5) ◽  
pp. 336-341 ◽  
Author(s):  
Kanokwan SRIRATTANA ◽  
Mariena KETUDAT-CAIRNS ◽  
Takashi NAGAI ◽  
Masahiro KANEDA ◽  
Rangsun PARNPAI




2017 ◽  
Vol 41 (3) ◽  
pp. 1255-1266 ◽  
Author(s):  
Jun-Xue Jin ◽  
Sanghoon Lee ◽  
Anukul Taweechaipaisankul ◽  
Geon A. Kim ◽  
Byeong Chun Lee

Background/Aims: Hypoacetylation caused by aberrant epigenetic nuclear reprogramming results in low efficiency of mammalian somatic cell nuclear transfer (SCNT). Many epigenetic remodeling drugs have been used in attempts to improve in vitro development of porcine SCNT embryos. In this study, we examined the effects of LAQ824, a structurally novel histone acetylase inhibitor, on the nuclear reprogramming and in vitro development of porcine SCNT embryos. Methods: LAQ824 treatment was supplemented during the culture of SCNT embryos. The reprogramming levels were measured by immunofluorescence and quantified by image J software. Relative expression levels of 18 genes were analyzed by quantitative real-time PCR. Results: 100 nM LAQ824 treatment of post-activation SCNT embryos for 24 h significantly improved the subsequent blastocyst formation rate. The LAQ824 treatment enhanced histone 3 lysine 9 (H3K9) levels, histone 4 lysine 12 (H4K12) levels, and reduced global DNA methylation levels as well as anti-5-methylcytosine (5-mC) at the pseudo-pronuclear and 2-cell stages. Furthermore, LAQ824 treatment positively regulated the mRNA expression of genes for histone acetylation (HAT1, HDAC1, 2, 3, and 6), DNA methylation (DNMT1, 3a and 3b), development (Pou5f1, Nanog, Sox2, and GLUT1) and apoptosis (Bax, Bcl2, Caspase 3 and Bak) in blastocysts. Conclusion: Optimum exposure (100 nM for 24 h) to LAQ824 post-activation improved the in vitro development of porcine SCNT embryos by enhancing levels of H3K9 and H4K12, reducing 5-mC, and regulating gene expression.



2012 ◽  
Vol 14 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Naresh L. Selokar ◽  
Monika Saini ◽  
Mushariffa Muzaffer ◽  
G. Krishnakanth ◽  
Ambika P. Saha ◽  
...  


2006 ◽  
Vol 176 (8) ◽  
pp. 4562-4572 ◽  
Author(s):  
Craig Chappell ◽  
Caroline Beard ◽  
John Altman ◽  
Rudolph Jaenisch ◽  
Joshy Jacob




Sign in / Sign up

Export Citation Format

Share Document