scholarly journals Word and Sentence Embedding Tools to Measure Semantic Similarity of Gene Ontology Terms by Their Definitions

2019 ◽  
Vol 26 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Dat Duong ◽  
Wasi Uddin Ahmad ◽  
Eleazar Eskin ◽  
Kai-Wei Chang ◽  
Jingyi Jessica Li
2015 ◽  
Vol 12 (4) ◽  
pp. 1235-1253 ◽  
Author(s):  
Shu-Bo Zhang ◽  
Jian-Huang Lai

Measuring the semantic similarity between pairs of terms in Gene Ontology (GO) can help to compare genes that can not be compared by other computational methods. In this study, we proposed an integrated information-based similarity measurement (IISM) to calculate the semantic similarity between two GO terms by taking into account multiple common ancestors that they share, and aggregating the semantic information and depth information of the non-redundant common ancestors. Our method searches for non-redundant common ancestors in an effective way. Validation experiments were conducted on both gene expression dataset and pathway dataset, and the experimental results suggest the superiority of our method against some existing methods.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Aaron Ayllon-Benitez ◽  
Romain Bourqui ◽  
Patricia Thébault ◽  
Fleur Mougin

Abstract The revolution in new sequencing technologies is greatly leading to new understandings of the relations between genotype and phenotype. To interpret and analyze data that are grouped according to a phenotype of interest, methods based on statistical enrichment became a standard in biology. However, these methods synthesize the biological information by a priori selecting the over-represented terms and may suffer from focusing on the most studied genes that represent a limited coverage of annotated genes within a gene set. Semantic similarity measures have shown great results within the pairwise gene comparison by making advantage of the underlying structure of the Gene Ontology. We developed GSAn, a novel gene set annotation method that uses semantic similarity measures to synthesize a priori Gene Ontology annotation terms. The originality of our approach is to identify the best compromise between the number of retained annotation terms that has to be drastically reduced and the number of related genes that has to be as large as possible. Moreover, GSAn offers interactive visualization facilities dedicated to the multi-scale analysis of gene set annotations. Compared to enrichment analysis tools, GSAn has shown excellent results in terms of maximizing the gene coverage while minimizing the number of terms.


2006 ◽  
Vol 16 (7) ◽  
pp. 721-726 ◽  
Author(s):  
Li Rong ◽  
Cao Shunliang ◽  
Li Yuanyuan ◽  
Tan Hao ◽  
Zhu Yangyong ◽  
...  

2011 ◽  
Vol 09 (06) ◽  
pp. 681-695 ◽  
Author(s):  
MARCO A. ALVAREZ ◽  
CHANGHUI YAN

Existing methods for calculating semantic similarities between pairs of Gene Ontology (GO) terms and gene products often rely on external databases like Gene Ontology Annotation (GOA) that annotate gene products using the GO terms. This dependency leads to some limitations in real applications. Here, we present a semantic similarity algorithm (SSA), that relies exclusively on the GO. When calculating the semantic similarity between a pair of input GO terms, SSA takes into account the shortest path between them, the depth of their nearest common ancestor, and a novel similarity score calculated between the definitions of the involved GO terms. In our work, we use SSA to calculate semantic similarities between pairs of proteins by combining pairwise semantic similarities between the GO terms that annotate the involved proteins. The reliability of SSA was evaluated by comparing the resulting semantic similarities between proteins with the functional similarities between proteins derived from expert annotations or sequence similarity. Comparisons with existing state-of-the-art methods showed that SSA is highly competitive with the other methods. SSA provides a reliable measure for semantics similarity independent of external databases of functional-annotation observations.


Sign in / Sign up

Export Citation Format

Share Document