protein protein interactions
Recently Published Documents


TOTAL DOCUMENTS

7007
(FIVE YEARS 1791)

H-INDEX

164
(FIVE YEARS 19)

2022 ◽  
Vol 12 (4) ◽  
pp. 807-812
Author(s):  
Yan Li ◽  
Yu-Ren Zhang ◽  
Ping Zhang ◽  
Dong-Xu Li ◽  
Tian-Long Xiao

It is a critical impact on the processing of biological cells to protein–protein interactions (PPIs) in nature. Traditional PPIs predictive biological experiments consume a lot of human and material costs and time. Therefore, there is a great need to use computational methods to forecast PPIs. Most of the existing calculation methods are based on the sequence characteristics or internal structural characteristics of proteins, and most of them have the singleness of features. Therefore, we propose a novel method to predict PPIs base on multiple information fusion through graph representation learning. Specifically, firstly, the known protein sequences are calculated, and the properties of each protein are obtained by k-mer. Then, the known protein relationship pairs were constructed into an adjacency graph, and the graph representation learning method–graph convolution network was used to fuse the attributes of each protein with the graph structure information to obtain the features containing a variety of information. Finally, we put the multi-information features into the random forest classifier species for prediction and classification. Experimental results indicate that our method has high accuracy and AUC of 78.83% and 86.10%, respectively. In conclusion, our method has an excellent application prospect for predicting unknown PPIs.


2022 ◽  
Author(s):  
Fred Lee ◽  
Xinhao Shao ◽  
Yu Gao ◽  
Alexandra Naba

The extracellular matrix (ECM) is a complex and dynamic meshwork of proteins providing structural support to cells. It also provides biochemical signals governing cellular processes including proliferation and migration. Alterations of ECM structure and/or composition has been shown to lead to, or accompany, many pathological processes including cancer and fibrosis. To understand how the ECM contributes to diseases, we first need to obtain a comprehensive characterization of the ECM of tissues and of its changes during disease progression. Over the past decade, mass-spectrometry-based proteomics has become the state-of-the-art method to profile the protein composition of ECMs. However, existing methods do not fully capture the broad dynamic range of protein abundance in the ECM, nor do they permit to achieve the high coverage needed to gain finer biochemical information, including the presence of isoforms or post-translational modifications. In addition, broadly adopted proteomic methods relying on extended trypsin digestion do not provide structural information on ECM proteins, yet, gaining insights into ECM protein structure is critical to better understanding protein functions. Here, we present the optimization of a time-lapsed proteomic method using limited proteolysis of partially denatured samples and the sequential release of peptides to achieve superior sequence coverage as compared to standard ECM proteomic workflow. Exploiting the spatio-temporal resolution of this method, we further demonstrate how 3-dimensional time-lapsed peptide mapping can identify protein regions differentially susceptible to trypsin and can thus identify sites of post-translational modifications, including protein-protein interactions. We further illustrate how this approach can be leveraged to gain insight on the role of the novel ECM protein SNED1 in ECM homeostasis. We found that the expression of SNED1 expression by mouse embryonic fibroblasts results in the alteration of overall ECM composition and the sequence coverage of certain ECM proteins, raising the possibility that SNED1 could modify accessibility to trypsin by engaging in protein-protein interactions.


2022 ◽  
Vol 23 (2) ◽  
pp. 840
Author(s):  
Li-Min Mao ◽  
Alaya Bodepudi ◽  
Xiang-Ping Chu ◽  
John Q. Wang

Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are G protein-coupled receptors and are broadly expressed in the mammalian brain. These receptors play key roles in the modulation of normal glutamatergic transmission and synaptic plasticity, and abnormal mGlu1/5 signaling is linked to the pathogenesis and symptomatology of various mental and neurological disorders. Group I mGlu receptors are noticeably regulated via a mechanism involving dynamic protein–protein interactions. Several synaptic protein kinases were recently found to directly bind to the intracellular domains of mGlu1/5 receptors and phosphorylate the receptors at distinct amino acid residues. A variety of scaffolding and adaptor proteins also interact with mGlu1/5. Constitutive or activity-dependent interactions between mGlu1/5 and their interacting partners modulate trafficking, anchoring, and expression of the receptors. The mGlu1/5-associated proteins also finetune the efficacy of mGlu1/5 postreceptor signaling and mGlu1/5-mediated synaptic plasticity. This review analyzes the data from recent studies and provides an update on the biochemical and physiological properties of a set of proteins or molecules that interact with and thus regulate mGlu1/5 receptors.


Mobile DNA ◽  
2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Kenji Ichiyanagi ◽  
Kuniaki Saito

AbstractThe fifth Japanese meeting on host–transposon interactions, titled “Biological Function and Evolution through Interactions between Hosts and Transposable Elements (TEs),” was held online on August 26–27, 2021. The meeting was supported by National Institute of Genetics and aimed to bring together researchers studying the diverse roles of TEs in genome function and evolution, as well as host defense systems against TE mobility by chromatin and RNA modifications and protein-protein interactions. Here, we present the highlights of the talks.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Oleg V. Kondrashov ◽  
Peter I. Kuzmin ◽  
Sergey A. Akimov

Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein–protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions—they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein–protein interactions in membrane domains with different bilayer thicknesses.


2022 ◽  
Author(s):  
Jasjot Singh ◽  
Hadeer Elhabashy ◽  
Pathma Muthukottiappan ◽  
Markus Stepath ◽  
Martin Eisenacher ◽  
...  

Lysosomes are well-established as the main cellular organelles for the degradation of macromolecules and emerging as regulatory centers of metabolism. They are of crucial importance for cellular homeostasis, which is exemplified by a plethora of disorders related to alterations in lysosomal function. In this context, protein complexes play a decisive role, regulating not only metabolic lysosomal processes, but also lysosome biogenesis, transport, and interaction with other organelles. Using cross-linking mass spectrometry, we analyzed lysosomes and early endosomes. Based on the identification of 5,376 cross-links, we investigated protein-protein interactions and structures of lysosome- and endosome-related proteins. In particular, we present evidence for a tetrameric assembly of the lysosomal hydrolase PPT1 and heterodimeric/-multimeric structures of FLOT1/FLOT2 at lysosomes and early endosomes. For FLOT1-/FLOT2-positive early endosomes, we identified >300 proteins presenting putative cargo, and confirm the latrophilin family of adhesion G protein-coupled receptors as substrates for flotillin-dependent endocytosis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tzu-Ping Ko ◽  
Yu-Chuan Wang ◽  
Chia-Shin Yang ◽  
Mei-Hui Hou ◽  
Chao-Jung Chen ◽  
...  

AbstractMammalian innate immune sensor STING (STimulator of INterferon Gene) was recently found to originate from bacteria. During phage infection, bacterial STING sense c-di-GMP generated by the CD-NTase (cGAS/DncV-like nucleotidyltransferase) encoded in the same operon and signal suicide commitment as a defense strategy that restricts phage propagation. However, the precise binding mode of c-di-GMP to bacterial STING and the specific recognition mechanism are still elusive. Here, we determine two complex crystal structures of bacterial STING/c-di-GMP, which provide a clear picture of how c-di-GMP is distinguished from other cyclic dinucleotides. The protein-protein interactions further reveal the driving force behind filament formation of bacterial STING. Finally, we group the bacterial STING into two classes based on the conserved motif in β-strand lid, which dictate their ligand specificity and oligomerization mechanism, and propose an evolution-based model that describes the transition from c-di-GMP-dependent signaling in bacteria to 2’3’-cGAMP-dependent signaling in eukaryotes.


Author(s):  
Karla V. Teymennet-Ramírez ◽  
Fernando Martínez-Morales ◽  
María R. Trejo-Hernández

Yeast surface display (YSD) is a “whole-cell” platform used for the heterologous expression of proteins immobilized on the yeast’s cell surface. YSD combines the advantages eukaryotic systems offer such as post-translational modifications, correct folding and glycosylation of proteins, with ease of cell culturing and genetic manipulation, and allows of protein immobilization and recovery. Additionally, proteins displayed on the surface of yeast cells may show enhanced stability against changes in temperature, pH, organic solvents, and proteases. This platform has been used to study protein-protein interactions, antibody design and protein engineering. Other applications for YSD include library screening, whole-proteome studies, bioremediation, vaccine and antibiotics development, production of biosensors, ethanol production and biocatalysis. YSD is a promising technology that is not yet optimized for biotechnological applications. This mini review is focused on recent strategies to improve the efficiency and selection of displayed proteins. YSD is presented as a cutting-edge technology for the vectorial expression of proteins and peptides. Finally, recent biotechnological applications are summarized. The different approaches described herein could allow for a better strategy cascade for increasing protein/peptide interaction and production.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Satoshi Yamanaka ◽  
Yuto Horiuchi ◽  
Saya Matsuoka ◽  
Kohki Kido ◽  
Kohei Nishino ◽  
...  

AbstractProteolysis-targeting chimaeras (PROTACs) as well as molecular glues such as immunomodulatory drugs (IMiDs) and indisulam are drugs that induce interactions between substrate proteins and an E3 ubiquitin ligases for targeted protein degradation. Here, we develop a workflow based on proximity-dependent biotinylation by AirID to identify drug-induced neo-substrates of the E3 ligase cereblon (CRBN). Using AirID-CRBN, we detect IMiD-dependent biotinylation of CRBN neo-substrates in vitro and identify biotinylated peptides of well-known neo-substrates by mass spectrometry with high specificity and selectivity. Additional analyses reveal ZMYM2 and ZMYM2-FGFR1 fusion protein—responsible for the 8p11 syndrome involved in acute myeloid leukaemia—as CRBN neo-substrates. Furthermore, AirID-DCAF15 and AirID-CRBN biotinylate neo-substrates targeted by indisulam and PROTACs, respectively, suggesting that this approach has the potential to serve as a general strategy for characterizing drug-inducible protein–protein interactions in cells.


2022 ◽  
Vol 12 ◽  
Author(s):  
Arangasamy Yazhini ◽  
Narayanaswamy Srinivasan ◽  
Sankaran Sandhya

Multi-protein assemblies are complex molecular systems that perform highly sophisticated biochemical functions in an orchestrated manner. They are subject to changes that are governed by the evolution of individual components. We performed a comparative analysis of the ancient and functionally conserved spliceosomal SF3b complex, to recognize molecular signatures that contribute to sequence divergence and functional specializations. For this, we recognized homologous sequences of individual SF3b proteins distributed across 10 supergroups of eukaryotes and identified all seven protein components of the complex in 578 eukaryotic species. Using sequence and structural analysis, we establish that proteins occurring on the surface of the SF3b complex harbor more sequence variation than the proteins that lie in the core. Further, we show through protein interface conservation patterns that the extent of conservation varies considerably between interacting partners. When we analyze phylogenetic distributions of individual components of the complex, we find that protein partners that are known to form independent subcomplexes are observed to share similar profiles, reaffirming the link between differential conservation of interface regions and their inter-dependence. When we extend our analysis to individual protein components of the complex, we find taxa-specific variability in molecular signatures of the proteins. These trends are discussed in the context of proline-rich motifs of SF3b4, functional and drug binding sites of SF3b1. Further, we report key protein-protein interactions between SF3b1 and SF3b6 whose presence is observed to be lineage-specific across eukaryotes. Together, our studies show the association of protein location within the complex and subcomplex formation patterns with the sequence conservation of SF3b proteins. In addition, our study underscores evolutionarily flexible elements that appear to confer adaptive features in individual components of the multi-protein SF3b complexes and may contribute to its functional adaptability.


Sign in / Sign up

Export Citation Format

Share Document