Borreliosis Transmission from Ticks Associated with Desert Tortoise Burrows: Examples of Tick-Borne Relapsing Fever in the Mojave Desert

Author(s):  
Molly J. Bechtel ◽  
Karla Kristina Drake ◽  
Todd C. Esque ◽  
Nathan C. Nieto ◽  
Jeffrey T. Foster ◽  
...  
2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Todd C. Esque ◽  
Lesley A. DeFalco ◽  
Gayle L. Tyree ◽  
K. Kristina Drake ◽  
Kenneth E. Nussear ◽  
...  

1994 ◽  
Vol 8 ◽  
pp. 72 ◽  
Author(s):  
David C. Rostal ◽  
Valentine A. Lance ◽  
Janice S. Grumbles ◽  
Allison C. Alberts

2017 ◽  
Author(s):  
Timothy H Webster ◽  
Greer A. Dolby ◽  
Melissa Wilson Sayres ◽  
Kenro Kusumi

Exogenous sequence contamination presents a challenge in first-draft genomes because it can lead to non-contiguous, chimeric assembled sequences. This can mislead downstream analyses reliant on synteny, such as linkage-based analyses. Recently, the Mojave Desert Tortoise (Gopherus agassizii) draft genome was published as a resource to advance conservation efforts for the threatened species and discover more about chelonian biology and evolution. Here, we illustrate steps taken to improve the desert tortoise draft genome by removing contaminating sequences—actions that are typically carried out after the initial release of a draft genome assembly. We used information from NCBI’s Vecscreen output to remove intra-scaffold contamination and trim heading and trailing Ns. We then reordered and renamed scaffolds, and transferred the gene annotation onto this assembly. Finally, we describe the tools developed for this pipeline, freely available on Github (https://github.com/thw17/G_agassizii_reference_update), which facilitate post-assembly processing of other draft genomes. The new gopAga1.1 genome has an N50 of 251 KB, L50 of 2592 scaffolds, and its annotation retains 17,201 of the original 20,172 genes that were unaffected by the scaffold processing.


2018 ◽  
Author(s):  
Timothy H Webster ◽  
Greer A Dolby ◽  
Melissa A Wilson Sayres ◽  
Kenro Kusumi

Exogenous sequence contamination presents a challenge in first-draft genomes because it can lead to non-contiguous, chimeric assembled sequences. This can mislead downstream analyses reliant on synteny, such as linkage-based analyses. Recently, the Mojave Desert Tortoise (Gopherus agassizii) draft genome was published as a resource to advance conservation efforts for the threatened species and discover more about chelonian biology and evolution. Here, we illustrate steps taken to improve the desert tortoise draft genome by removing contaminating sequences—actions that are typically carried out after the initial release of a draft genome assembly. We used information from NCBI’s Vecscreen output to remove intra-scaffold contamination and trim heading and trailing Ns. We then reordered and renamed scaffolds, and transferred the gene annotation onto this assembly. Finally, we describe the tools developed for this pipeline, freely available on Github (https://github.com/thw17/G_agassizii_reference_update), which facilitate post-assembly processing of other draft genomes. The new gopAga1.1 genome has an N50 of 251 kb, L50 of 2592 scaffolds, and its annotation retains 17,201 of the original 20,172 genes that were unaffected by the scaffold processing.


2020 ◽  
Vol 12 (2) ◽  
pp. 3917-3925
Author(s):  
Greer A Dolby ◽  
Matheo Morales ◽  
Timothy H Webster ◽  
Dale F DeNardo ◽  
Melissa A Wilson ◽  
...  

Abstract Toll-like receptors (TLRs) are a complex family of innate immune genes that are well characterized in mammals and birds but less well understood in nonavian sauropsids (reptiles). The advent of highly contiguous draft genomes of nonmodel organisms enables study of such gene families through analysis of synteny and sequence identity. Here, we analyze TLR genes from the genomes of 22 tetrapod species. Findings reveal a TLR8 gene expansion in crocodilians and turtles (TLR8B), and a second duplication (TLR8C) specifically within turtles, followed by pseudogenization of that gene in the nonfreshwater species (desert tortoise and green sea turtle). Additionally, the Mojave desert tortoise (Gopherus agassizii) has a stop codon in TLR8B (TLR8-1) that is polymorphic among conspecifics. Revised orthology further reveals a new TLR homolog, TLR21-like, which is exclusive to lizards, snakes, turtles, and crocodilians. These analyses were made possible by a new draft genome assembly of the desert tortoise (gopAga2.0), which used chromatin-based assembly to yield draft chromosomal scaffolds (L50 = 26 scaffolds, N50 = 28.36 Mb, longest scaffold = 107 Mb) and an enhanced de novo genome annotation with 25,469 genes. Our three-step approach to orthology curation and comparative analysis of TLR genes shows what new insights are possible using genome assemblies with chromosome-scale scaffolds that permit integration of synteny conservation data.


2017 ◽  
Vol 7 (17) ◽  
pp. 7010-7022 ◽  
Author(s):  
Giancarlo Sadoti ◽  
Miranda E. Gray ◽  
Matthew L. Farnsworth ◽  
Brett G. Dickson

PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0238202
Author(s):  
Cindy Xu ◽  
Greer A. Dolby ◽  
K. Kristina Drake ◽  
Todd C. Esque ◽  
Kenro Kusumi

2015 ◽  
Vol 10 (3) ◽  
pp. 282-294 ◽  
Author(s):  
Annette E. SIEG ◽  
Megan M. GAMBONE ◽  
Bryan P. WALLACE ◽  
Susana CLUSELLA-TRULLAS ◽  
James R. SPOTILA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document