Some special values for the 𝐵𝐶 type hypergeometric function

Author(s):  
R. J. Beerends
2019 ◽  
Vol 22 (05) ◽  
pp. 1950040
Author(s):  
Masanori Asakura ◽  
Toshifumi Yabu

In [M. Asakura, N. Otsubo and T. Terasoma, An algebro-geometric study of special values of hypergeometric functions [Formula: see text], to appear in Nagoya Math. J.; https://doi.org/10.1017/nmj.2018.36 ], we proved that the value of [Formula: see text] of the generalized hypergeometric function is a [Formula: see text]-linear combination of log of algebraic numbers if rational numbers [Formula: see text] satisfy a certain condition. In this paper, we present a method to obtain an explicit description of it.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1273
Author(s):  
Alexander Apelblat ◽  
Armando Consiglio ◽  
Francesco Mainardi

The Bateman functions and the allied Havelock functions were introduced as solutions of some problems in hydrodynamics about ninety years ago, but after a period of one or two decades they were practically neglected. In handbooks, the Bateman function is only mentioned as a particular case of the confluent hypergeometric function. In order to revive our knowledge on these functions, their basic properties (recurrence functional and differential relations, series, integrals and the Laplace transforms) are presented. Some new results are also included. Special attention is directed to the Bateman and Havelock functions with integer orders, to generalizations of these functions and to the Bateman-integral function known in the literature.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550082 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

Recently, Opps, Saad and Srivastava [Recursion formulas for Appell’s hypergeometric function [Formula: see text] with some applications to radiation field problems, Appl. Math. Comput. 207 (2009) 545–558] presented the recursion formulas for Appell’s function [Formula: see text] and also gave its applications to radiation field problems. Then Wang [Recursion formulas for Appell functions, Integral Transforms Spec. Funct. 23(6) (2012) 421–433] obtained the recursion formulas for Appell functions [Formula: see text] and [Formula: see text]. In our investigation here, we derive the recursion formulas for 14 three-variable Lauricella functions, three Srivastava’s triple hypergeometric functions and four [Formula: see text]-variable Lauricella functions.


1992 ◽  
Vol 114 (2) ◽  
pp. 337 ◽  
Author(s):  
Rhonda L. Hatcher
Keyword(s):  

Author(s):  
F. V. Atkinson ◽  
C. T. Fulton

SynopsisAsymptotic formulae for the positive eigenvalues of a limit-circle eigenvalue problem for –y” + qy = λy on the finite interval (0, b] are obtained for potentials q which are limit circle and non-oscillatory at x = 0, under the assumption xq(x)∈L1(0,6). Potentials of the form q(x) = C/xk, 0<fc<2, are included. In the case where k = 1, an independent check based on the limit-circle theory of Fulton and an asymptotic expansion of the confluent hypergeometric function, M(a, b; z), verifies the main result.


Sign in / Sign up

Export Citation Format

Share Document