scholarly journals Explicit logarithmic formulas of special values of hypergeometric functions 3F2

2019 ◽  
Vol 22 (05) ◽  
pp. 1950040
Author(s):  
Masanori Asakura ◽  
Toshifumi Yabu

In [M. Asakura, N. Otsubo and T. Terasoma, An algebro-geometric study of special values of hypergeometric functions [Formula: see text], to appear in Nagoya Math. J.; https://doi.org/10.1017/nmj.2018.36 ], we proved that the value of [Formula: see text] of the generalized hypergeometric function is a [Formula: see text]-linear combination of log of algebraic numbers if rational numbers [Formula: see text] satisfy a certain condition. In this paper, we present a method to obtain an explicit description of it.

2018 ◽  
Vol 236 ◽  
pp. 47-62
Author(s):  
MASANORI ASAKURA ◽  
NORIYUKI OTSUBO ◽  
TOMOHIDE TERASOMA

For a certain class of hypergeometric functions $_{3}F_{2}$ with rational parameters, we give a sufficient condition for the special value at $1$ to be expressed in terms of logarithms of algebraic numbers. We give two proofs, both of which are algebro-geometric and related to higher regulators.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
T. A. Ishkhanyan ◽  
T. A. Shahverdyan ◽  
A. M. Ishkhanyan

We examine the expansions of the solutions of the general Heun equation in terms of the Gauss hypergeometric functions. We present several expansions using functions, the forms of which differ from those applied before. In general, the coefficients of the expansions obey three-term recurrence relations. However, there exist certain choices of the parameters for which the recurrence relations become two-term. The coefficients of the expansions are then explicitly expressed in terms of the gamma functions. Discussing the termination of the presented series, we show that the finite-sum solutions of the general Heun equation in terms of generally irreducible hypergeometric functions have a representation through a single generalized hypergeometric function. Consequently, the power-series expansion of the Heun function for any such case is governed by a two-term recurrence relation.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650064 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

The main object of this paper is to present a generalization of the Pochhammer symbol. We present some contiguous relations of this generalized Pochhammer symbol and use it to give an extension of the generalized hypergeometric function [Formula: see text]. Finally, we present some properties and generating functions of this extended generalized hypergeometric function.


1992 ◽  
Vol 15 (4) ◽  
pp. 653-657 ◽  
Author(s):  
Vu Kim Tuan ◽  
R. G. Buschman

The generalized hypergeometric function was introduced by Srivastava and Daoust. In the present paper a new integral representation is derived. Similarly new integral representations of Lauricella and Appell function are obtained.


2020 ◽  
Vol 27 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh K. Parmar ◽  
Purnima Chopra

AbstractMotivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 2014, 484–491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.


1969 ◽  
Vol 65 (3) ◽  
pp. 725-730 ◽  
Author(s):  
F. Singh

1. The object of this paper is to evaluate an infinite integral, involving the product of H-functions, generalized hypergeometric functions and confluent hypergeometric functions by means of finite difference operators E. As the generalized hypergeometric function and H-function are of a very general nature, the integral, on specializing the parameters, leads to a generalization of many results some of which are known and others are believed to be new.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
N. Magesh ◽  
N. B. Gatti ◽  
S. Mayilvaganan

We introduce and study a subclass ΣP(γ,k,λ,c) of meromorphic univalent functions defined by certain linear operator involving the generalized hypergeometric function. We obtain coefficient estimates, extreme points, growth and distortion inequalities, radii of meromorphic starlikeness, and convexity for the class ΣP(γ,k,λ,c) by fixing the second coefficient. Further, it is shown that the class ΣP(γ,k,λ) is closed under convex linear combination.


1968 ◽  
Vol 64 (2) ◽  
pp. 413-416
Author(s):  
B. L. Sharma

The main object of this paper is to derive an expansion formula for a generalized hypergeometric function of two variables in a series of products of generalized hypergeometric functions of two variables and a Meijer's G-function. The result established in this paper is the extension of the results recently given by Srivastava (5) and Verma (6). It is interesting to note that some interesting expansions can be derived from the result by specializing the parameters.


2013 ◽  
Vol 12 (01) ◽  
pp. 107-115 ◽  
Author(s):  
HANS VOLKMER ◽  
JOHN J. WOOD

We use arguments from probability theory to derive an explicit expression for the asymptotic expansion of the generalized hypergeometric function for p = q and show that the coefficients in the expansion are polynomials in the parameters of the hypergeometric function. The idea behind this paper originates from the second author's Ph.D. thesis, where the case p = 2 is treated.


Author(s):  
H. M. Srivastava

1. Making use of the familiar abbreviationlet us adopt a contracted notation for the generalized hypergeometric function AFB[x] and writewhere (a) denotes the sequence of parameters


Sign in / Sign up

Export Citation Format

Share Document