A Space of Weight 1 Modular Forms Attached to Totally Real Cubic Number Fields

Author(s):  
Guillermo Mantilla-Soler
2016 ◽  
Vol 12 (03) ◽  
pp. 691-723 ◽  
Author(s):  
Ren-He Su

In 1975, Cohen constructed a kind of one-variable modular forms of half-integral weight, say [Formula: see text], whose [Formula: see text]th Fourier coefficient only occurs when [Formula: see text] is congruent to 0 or 1 modulo 4. The space of modular forms whose Fourier coefficients have the above property is called Kohnen plus space, initially introduced by Kohnen in 1980. Recently, Hiraga and Ikeda generalized the plus space to the spaces for half-integral weight Hilbert modular forms with respect to general totally real number fields. The [Formula: see text]th Fourier coefficients [Formula: see text] of a Hilbert modular form of parallel weight [Formula: see text] lying in the generalized Kohnen plus space does not vanish only if [Formula: see text] is congruent to a square modulo 4. In this paper, we use an adelic way to construct Eisenstein series of parallel half-integral weight belonging to the generalized Kohnen plus spaces and give an explicit form for their Fourier coefficients. These series give a generalization of the one introduced by Cohen. Moreover, we show that the Kohnen plus space is generated by the cusp forms and the Eisenstein series we constructed as a vector space over [Formula: see text].


1978 ◽  
Vol 71 ◽  
pp. 43-60 ◽  
Author(s):  
Shōyū Nagaoka

H. P. F. Swinnerton-Dyer determined the structure of the algebra of modular forms mod p for all prime numbers p in elliptic modular case (cf. [10]). Using his result, J.-P. Serre investigated the properties of p-adic modular forms and succeeded to construct the p-adic zeta functions for any totally real number fields (cf. [8]).


2020 ◽  
Vol 16 (06) ◽  
pp. 1307-1323
Author(s):  
Daeyeol Jeon ◽  
Andreas Schweizer

Let [Formula: see text] be an elliptic curve defined over [Formula: see text], and let [Formula: see text] be the torsion group [Formula: see text] for some cubic field [Formula: see text] which does not occur over [Formula: see text]. In this paper, we determine over which types of cubic number fields (cyclic cubic, non-Galois totally real cubic, complex cubic or pure cubic) [Formula: see text] can occur, and if so, whether it can occur infinitely often or not. Moreover, if it occurs, we provide elliptic curves [Formula: see text] together with cubic fields [Formula: see text] so that [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document