triple product
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 45)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Liuquan Wang

Andrews and Merca investigated a truncated version of Euler's pentagonal number theorem and showed that the coefficients of the truncated series are nonnegative. They also considered the truncated series arising from Jacobi's triple product identity, and they conjectured that its coefficients are nonnegative. This conjecture was posed by Guo and Zeng independently and confirmed by Mao and Yee using different approaches. In this paper, we provide a new combinatorial proof of their nonnegativity result related to Euler's pentagonal number theorem. Meanwhile, we find an analogous result for a truncated series arising from Jacobi's triple product identity in a different manner.


Author(s):  
Kengo Fukunaga ◽  
Kohta Gejima

Let [Formula: see text] be a normalized cuspidal Hecke eigenform. We give explicit formulas for weighted averages of the rightmost critical values of triple product [Formula: see text]-functions [Formula: see text], where [Formula: see text] and [Formula: see text] run over an orthogonal basis of [Formula: see text] consisting of normalized cuspidal Hecke eigenforms. Those explicit formulas provide us an arithmetic expression of the rightmost critical value of the individual triple product [Formula: see text]-functions.


2021 ◽  
Vol 6 (44) ◽  
pp. 12316-12322
Author(s):  
Imran Ahmed Samo ◽  
Waqas Mughal ◽  
Muhammad Shakeel ◽  
Kamran Ahmed Samo ◽  
Congtian Chen

2021 ◽  
Vol 1 (2) ◽  
pp. 1-3
Author(s):  
Igor Stepanov*

The triple product rule, also known as the cyclic chain rule, cyclic relation, cyclical rule or Euler's chain rule, relates the partial derivatives of three interdependent variables, and often finds application in thermodynamics. It is shown here that its derivation is wrong, and that this rule is not correct; hence, the Mayer's relation and the heat capacity ratio, which describe the difference between isobaric and isochoric heat capacities, are also untrue. Also, the relationship linking thermal expansion and isothermal compressibility is wrong. These results are confirmed by many experiments and by the previous theoretical findings of the author.


Author(s):  
Igor Stepanov ◽  

The triple product rule, also known as the cyclic chain rule, cyclic relation, cyclical rule or Euler’s chain rule, relates the partial derivatives of three interdependent variables, and often finds application in thermodynamics. It is shown here that its derivation is wrong, and that this rule is not correct; hence, the Mayer’s relation and the heat capacity ratio, which describe the difference between isobaric and isochoric heat capacities, are also untrue. Also, the relationship linking thermal expansion and isothermal compressibility is wrong. These results are confirmed by many experiments and by the previous theoretical findings of the author.


2021 ◽  
Vol 24 (5) ◽  
pp. 1629-1635
Author(s):  
Thomas Simon

Abstract We give a very simple proof of the positivity and unimodality of the Green function for the killed fractional Laplacian on the periodic domain. The argument relies on the Jacobi triple product and a probabilistic representation of the Green function. We also show by a contour integration that the Green function is completely monotone on the positive part of the periodic domain.


Nature ◽  
2021 ◽  
Vol 596 (7871) ◽  
pp. 221-226
Author(s):  
C. D. Beidler ◽  
H. M. Smith ◽  
A. Alonso ◽  
T. Andreeva ◽  
J. Baldzuhn ◽  
...  

AbstractResearch on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator’s non-turbulent ‘neoclassical’ energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization.


Author(s):  
Xiang Gao ◽  
Tao Zhang ◽  
Muquan Wu ◽  
Guoqiang Li ◽  
Long Zeng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document