Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge

2004 ◽  
pp. 75-87 ◽  
Author(s):  
Giovanni Peccati ◽  
Marc Yor
2004 ◽  
Vol 47 (2) ◽  
pp. 280-297 ◽  
Author(s):  
Ed Perkins

AbstractThis article is a short introduction to super-Brownian motion. Some of its properties are discussed but our main objective is to describe a number of limit theorems which show super-Brownian motion is a universal limit for rescaled spatial stochastic systems at criticality above a critical dimenson. These systems include the voter model, the contact process and critical oriented percolation.


2020 ◽  
Vol 178 (3-4) ◽  
pp. 1173-1192 ◽  
Author(s):  
Jean Bertoin

Abstract A reinforcement algorithm introduced by Simon (Biometrika 42(3/4):425–440, 1955) produces a sequence of uniform random variables with long range memory as follows. At each step, with a fixed probability $$p\in (0,1)$$ p ∈ ( 0 , 1 ) , $${\hat{U}}_{n+1}$$ U ^ n + 1 is sampled uniformly from $${\hat{U}}_1, \ldots , {\hat{U}}_n$$ U ^ 1 , … , U ^ n , and with complementary probability $$1-p$$ 1 - p , $${\hat{U}}_{n+1}$$ U ^ n + 1 is a new independent uniform variable. The Glivenko–Cantelli theorem remains valid for the reinforced empirical measure, but not the Donsker theorem. Specifically, we show that the sequence of empirical processes converges in law to a Brownian bridge only up to a constant factor when $$p<1/2$$ p < 1 / 2 , and that a further rescaling is needed when $$p>1/2$$ p > 1 / 2 and the limit is then a bridge with exchangeable increments and discontinuous paths. This is related to earlier limit theorems for correlated Bernoulli processes, the so-called elephant random walk, and more generally step reinforced random walks.


1992 ◽  
Vol 29 (02) ◽  
pp. 291-304 ◽  
Author(s):  
J. Durbin ◽  
D. Williams

An expression for the first-passage density of Brownian motion to a curved boundary is expanded as a series of multiple integrals. Bounds are given for the error due to truncation of the series when the boundary is wholly concave or wholly convex. Extensions to the Brownian bridge and to continuous Gauss–Markov processes are given. The series provides a practical method for calculating the probability that a sample path crosses the boundary in a specified time-interval to a high degree of accuracy. A numerical example is given.


2007 ◽  
Vol 44 (04) ◽  
pp. 1056-1067 ◽  
Author(s):  
Andreas Lindell ◽  
Lars Holst

Expressions for the joint distribution of the longest and second longest excursions as well as the marginal distributions of the three longest excursions in the Brownian bridge are obtained. The method, which primarily makes use of the weak convergence of the random walk to the Brownian motion, principally gives the possibility to obtain any desired joint or marginal distribution. Numerical illustrations of the results are also given.


1986 ◽  
Vol 18 (04) ◽  
pp. 1017-1018 ◽  
Author(s):  
J.-P. Imhof

Limit theorems of Berman involve the total time spent by Brownian motion with negative drift above a fixed or exponentially distributed negative level. We give explicitly the probability densities and distribution functions, obtained via an equivalence of laws.


2004 ◽  
Vol 41 (1) ◽  
pp. 202-210
Author(s):  
Wen-Ming Hong

We prove some central limit theorems for a two-level super-Brownian motion with random immigration, which lead to limiting Gaussian random fields. The covariances of those Gaussian fields are explicitly characterized.


Sign in / Sign up

Export Citation Format

Share Document