scholarly journals Existence of dynamical low-rank approximations to parabolic problems

2020 ◽  
pp. 1
Author(s):  
Markus Bachmayr ◽  
Henrik Eisenmann ◽  
Emil Kieri ◽  
André Uschmajew

2016 ◽  
Vol 86 (304) ◽  
pp. 701-724 ◽  
Author(s):  
Markus Bachmayr ◽  
Albert Cohen


2019 ◽  
pp. 117-138
Author(s):  
David Forsyth


2019 ◽  
Vol 38 (6) ◽  
pp. 1446-1456 ◽  
Author(s):  
Runze Tang ◽  
Michael Ketcha ◽  
Alexandra Badea ◽  
Evan D. Calabrese ◽  
Daniel S. Margulies ◽  
...  


Author(s):  
Pratik Jawanpuria ◽  
Mayank Meghwanshi ◽  
Bamdev Mishra


2019 ◽  
Vol 41 (1) ◽  
pp. A59-A82 ◽  
Author(s):  
Nicholas J. Higham ◽  
Theo Mary


2018 ◽  
Vol 39 (3) ◽  
pp. 1221-1244 ◽  
Author(s):  
Kim Batselier ◽  
Wenjian Yu ◽  
Luca Daniel ◽  
Ngai Wong


2004 ◽  
Vol 25 (4) ◽  
pp. 901-920 ◽  
Author(s):  
Zhenyue Zhang ◽  
Hongyuan Zha ◽  
Horst Simon


2019 ◽  
Vol 19 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Angelos Mantzaflaris ◽  
Felix Scholz ◽  
Ioannis Toulopoulos

AbstractIn this paper we present a space-time isogeometric analysis scheme for the discretization of parabolic evolution equations with diffusion coefficients depending on both time and space variables. The problem is considered in a space-time cylinder in {\mathbb{R}^{d+1}}, with {d=2,3}, and is discretized using higher-order and highly-smooth spline spaces. This makes the matrix formation task very challenging from a computational point of view. We overcome this problem by introducing a low-rank decoupling of the operator into space and time components. Numerical experiments demonstrate the efficiency of this approach.



Sign in / Sign up

Export Citation Format

Share Document