elliptic pdes
Recently Published Documents


TOTAL DOCUMENTS

423
(FIVE YEARS 100)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 272 (1334) ◽  
Author(s):  
Adrían González-Pérez ◽  
Marius Junge ◽  
Javier Parcet

We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes’ pseudodifferential calculus for rotation algebras, thanks to a new form of Calderón-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce L p L_p -boundedness and Sobolev p p -estimates for regular, exotic and forbidden symbols in the expected ranks. In the L 2 L_2 level both Calderón-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove L p L_p -regularity of solutions for elliptic PDEs.


Author(s):  
Dong T.P. Nguyen ◽  
Dirk Nuyens

We introduce the \emph{multivariate decomposition finite element method} (MDFEM) for elliptic PDEs with lognormal diffusion coefficients, that is, when the diffusion coefficient has the form $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\bsy) = \sum_{j \ge 1} y_j \, \phi_j$ with $y_j \sim \calN(0,1)$ and a given sequence of functions $\{\phi_j\}_{j \ge 1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the \emph{multivariate decomposition method} (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using \emph{quasi-Monte Carlo} (QMC) methods, and for which we use the \emph{finite element method} (FEM) to solve different instances of the PDE.   We develop higher-order quasi-Monte Carlo rules for integration over the finite-di\-men\-si\-onal Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of \emph{anchored Gaussian Sobolev spaces} while taking into account the truncation error. These cubature rules are then used in the MDFEM algorithm.   Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon^{-1/\lambda-\dd/\lambda}) = O(\epsilon^{-(p^* + \dd/\tau)/(1-p^*)})$ where $\epsilon^{-1/\lambda}$ and $\epsilon^{-\dd/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $\dd = d \, (1+\ddelta)$ for some $\ddelta \ge 0$ and $d$ the physical dimension, and $0 < p^* \le (2 + \dd/\tau)^{-1}$ is a parameter representing the sparsity of $\{\phi_j\}_{j \ge 1}$.


Author(s):  
Julian Fischer ◽  
Stefan Neukamm

AbstractWe derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $$\mathbb {R}^d$$ R d with stationary law (that is spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $$\varepsilon >0$$ ε > 0 , we establish homogenization error estimates of the order $$\varepsilon $$ ε in case $$d\geqq 3$$ d ≧ 3 , and of the order $$\varepsilon |\log \varepsilon |^{1/2}$$ ε | log ε | 1 / 2 in case $$d=2$$ d = 2 . Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence $$\varepsilon ^\delta $$ ε δ . We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $$(L/\varepsilon )^{-d/2}$$ ( L / ε ) - d / 2 for a representative volume of size L. Our results also hold in the case of systems for which a (small-scale) $$C^{1,\alpha }$$ C 1 , α regularity theory is available.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1535
Author(s):  
Chih-Yu Liu ◽  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Shih-Meng Hsu

In this article, a novel infinitely smooth polyharmonic radial basis function (PRBF) collocation method for solving elliptic partial differential equations (PDEs) is presented. The PRBF with natural logarithm is a piecewise smooth function in the conventional radial basis function collocation method for solving governing equations. We converted the piecewise smooth PRBF into an infinitely smooth PRBF using source points collocated outside the domain to ensure that the radial distance was always greater than zero to avoid the singularity of the conventional PRBF. Accordingly, the PRBF and its derivatives in the governing PDEs were always continuous. The seismic wave propagation problem, groundwater flow problem, unsaturated flow problem, and groundwater contamination problem were investigated to reveal the robustness of the proposed PRBF. Comparisons of the conventional PRBF with the proposed method were carried out as well. The results illustrate that the proposed approach could provide more accurate solutions for solving PDEs than the conventional PRBF, even with the optimal order. Furthermore, we also demonstrated that techniques designed to deal with the singularity in the original piecewise smooth PRBF are no longer required.


Sign in / Sign up

Export Citation Format

Share Document