Additive Theory of Prime Numbers

Author(s):  
L. Hua
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yongmin Wang

This paper is divided into three parts to discuss the divisor function. It mainly combines the high power sum of the divisor function to study the solution number of the polynomial with integer coefficients "g(x)=0(modq)", and to improve some of the conclusions in the second chapter of Additive Theory of Prime Numbers and prove the improved conclusions.


Author(s):  
Ibrahima Gueye

For two millennia, the prime numbers have continued to fascinate mathematicians. Indeed, a conjecture which dates back to this period states that the number of twin primes is infinite. In 1949 Clement showed a theorem on twin primes. For the record, the theorem of Clement has quickly been known to be ineffective in the development of twin primes because of the factorial. This is why I thought ofusing the additive theory of numbers to find pairs of twin primes from the first two pairs of twin primes. What I have formulated as a conjecture. In same time i presentmy idea about the solution of the Goldbach’s weak conjecture.


2004 ◽  
Vol 41 (3) ◽  
pp. 309-324
Author(s):  
C. Bauer
Keyword(s):  

Let pi, 2 ≤ i ≤ 5 be prime numbers. It is proved that all but ≪ x23027/23040+ε even integers N ≤ x can be written as N = p21 + p32 + p43 + p45.


1977 ◽  
Vol 1 (S2) ◽  
pp. 7-19 ◽  
Author(s):  
Don Zagier
Keyword(s):  

2020 ◽  
Vol 70 (3) ◽  
pp. 657-666
Author(s):  
Bingzhe Hou ◽  
Yue Xin ◽  
Aihua Zhang

AbstractLet x = $\begin{array}{} \displaystyle \{x_n\}_{n=1}^{\infty} \end{array}$ be a sequence of positive numbers, and 𝓙x be the collection of all subsets A ⊆ ℕ such that $\begin{array}{} \displaystyle \sum_{k\in A} \end{array}$xk < +∞. The aim of this article is to study how large the summable subsequence could be. We define the upper density of summable subsequences of x as the supremum of the upper asymptotic densities over 𝓙x, SUD in brief, and we denote it by D*(x). Similarly, the lower density of summable subsequences of x is defined as the supremum of the lower asymptotic densities over 𝓙x, SLD in brief, and we denote it by D*(x). We study the properties of SUD and SLD, and also give some examples. One of our main results is that the SUD of a non-increasing sequence of positive numbers tending to zero is either 0 or 1. Furthermore, we obtain that for a non-increasing sequence, D*(x) = 1 if and only if $\begin{array}{} \displaystyle \liminf_{k\to\infty}nx_n=0, \end{array}$ which is an analogue of Cauchy condensation test. In particular, we prove that the SUD of the sequence of the reciprocals of all prime numbers is 1 and its SLD is 0. Moreover, we apply the results in this topic to improve some results for distributionally chaotic linear operators.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050036
Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi

In this paper, we prove that the direct product [Formula: see text], where [Formula: see text] are distinct numbers, is uniquely determined by its complex group algebra. Particularly, we show that the direct product [Formula: see text], where [Formula: see text]’s are distinct odd prime numbers, is uniquely determined by its order and three irreducible character degrees.


1996 ◽  
Vol 39 (4) ◽  
pp. 402-407 ◽  
Author(s):  
Jean-Luc Chabert
Keyword(s):  

AbstractWe give a characterization of polynomials with rational coefficients which take integral values on the prime numbers: to test a polynomial of degree n, it is enough to consider its values on the integers from 1 to 2n —1.


Sign in / Sign up

Export Citation Format

Share Document