scholarly journals Each regular paratopological group is completely regular

2016 ◽  
Vol 145 (3) ◽  
pp. 1373-1382 ◽  
Author(s):  
Taras Banakh ◽  
Alex Ravsky

2013 ◽  
Vol 1 ◽  
pp. 37-45 ◽  
Author(s):  
Iván Sánchez

AbstractWe show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf number. We also prove that every Hausdorff paratopological group with countable π- character has a regular Gσ-diagonal.



2013 ◽  
Vol 1 ◽  
pp. 22-30 ◽  
Author(s):  
Mikhail Tkachenko

AbstractWe construct a precompact completely regular paratopological Abelian group G of size (2ω)+ such that all subsets of G of cardinality ≤ 2ω are closed. This shows that Protasov’s theorem on non-closed discrete subsets of precompact topological groups cannot be extended to paratopological groups. We also prove that the group reflection of the product of an arbitrary family of paratopological (even semitopological) groups is topologically isomorphic to the product of the group reflections of the factors, and that the group reflection, H*, of a dense subgroup G of a paratopological group G is topologically isomorphic to a subgroup of G*.



Author(s):  
P. R. Jones

AbstractSeveral morphisms of this lattice V(CR) are found, leading to decompostions of it, and various sublattices, into subdirect products of interval sublattices. For example the map V → V ∪ G (where G is the variety of groups) is shown to be a retraction of V(CR); from modularity of the lattice V(BG) of varieties of bands of groups it follows that the map V → (V ∪ V V G) is an isomorphism of V(BG).



2020 ◽  
pp. 1-17
Author(s):  
MARCY BARGE ◽  
JOHANNES KELLENDONK

Abstract It is shown that the Ellis semigroup of a $\mathbb Z$ -action on a compact totally disconnected space is completely regular if and only if forward proximality coincides with forward asymptoticity and backward proximality coincides with backward asymptoticity. Furthermore, the Ellis semigroup of a $\mathbb Z$ - or $\mathbb R$ -action for which forward proximality and backward proximality are transitive relations is shown to have at most two left minimal ideals. Finally, the notion of near simplicity of the Ellis semigroup is introduced and related to the above.



1977 ◽  
Vol 23 (1) ◽  
pp. 46-58 ◽  
Author(s):  
A. R. Bednarek ◽  
Eugene M. Norris

SynopsisIn this paper we define two semigroups of continuous relations on topological spaces and determine a large class of spaces for which Banach-Stone type theorems hold, i.e. spaces for which isomorphism of the semigroups implies homeomorphism of the spaces. This class includes all 0-dimensional Hausdorff spaces and all those completely regular Hausdorff spaces which contain an arc; indeed all of K. D. Magill's S*-spaces are included. Some of the algebraic structure of the semigroup of all continuous relations is elucidated and a method for producing examples of topological semigroups of relations is discussed.



1984 ◽  
Vol 29 (1) ◽  
pp. 365-374 ◽  
Author(s):  
Matthew Gould ◽  
Joseph A. Iskra ◽  
Constantine Tsinakis
Keyword(s):  


1998 ◽  
Vol 43 (5) ◽  
pp. 379-381
Author(s):  
Xueming Ren ◽  
Yuqi Guo ◽  
Jiaping Cen


1957 ◽  
Vol 8 (6) ◽  
pp. 1060
Author(s):  
L. J. Heider
Keyword(s):  


1975 ◽  
Vol 7 (1) ◽  
pp. 83-122 ◽  
Author(s):  
Odile Macchi

The structure of the probability space associated with a general point process, when regarded as a counting process, is reviewed using the coincidence formalism. The rest of the paper is devoted to the class of regular point processes for which all coincidence probabilities admit densities. It is shown that their distribution is completely specified by the system of coincidence densities. The specification formalism is stressed for ‘completely’ regular point processes. A construction theorem gives a characterization of the system of coincidence densities of such a process. It permits the study of most models of point processes. New results on the photon process, a particular type of conditioned Poisson process, are derived. New examples are exhibited, including the Gauss-Poisson process and the ‘fermion’ process that is suitable whenever the points are repulsive.



Sign in / Sign up

Export Citation Format

Share Document