lindelöf number
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2020 ◽  
Vol 63 (1) ◽  
pp. 197-203 ◽  
Author(s):  
Angelo Bella ◽  
Santi Spadaro

AbstractWe present a result about $G_{\unicode[STIX]{x1D6FF}}$ covers of a Hausdorff space that implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: $|X|\leqslant 2^{L(X)\unicode[STIX]{x1D712}(X)}$ (Arhangel’skiĭ) and $|X|\leqslant 2^{c(X)\unicode[STIX]{x1D712}(X)}$ (Hajnal–Juhász). This solves a question that goes back to Bell, Ginsburg and Woods’s 1978 paper (M. Bell, J.N. Ginsburg and R.G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79(1978), 37–45) and is mentioned in Hodel’s survey on Arhangel’skiĭ’s Theorem (R. Hodel, Arhangel’skii’s solution to Alexandroff’s problem: A survey, Topology Appl. 153(2006), 2199–2217).In contrast to previous attempts, we do not need any separation axiom beyond $T_{2}$.



2018 ◽  
Vol 73 (3) ◽  
pp. 116-119
Author(s):  
D. P. Baturov ◽  
E. A. Reznichenko
Keyword(s):  


2018 ◽  
Vol 68 (2) ◽  
pp. 431-450 ◽  
Author(s):  
David Maya ◽  
Patricia Pellicer-Covarrubias ◽  
Roberto Pichardo-Mendoza

Abstract The symbol 𝓢c(X) denotes the hyperspace of all nontrivial convergent sequences in a Hausdorff space X. This hyperspace is endowed with the Vietoris topology. In the current paper, we compare the cellularity, the tightness, the extent, the dispersion character, the net weight, the i-weight, the π-weight, the π-character, the pseudocharacter and the Lindelöf number of 𝓢c(X) with the corresponding cardinal function of X. We also answer a question posed by the authors in a previous paper.



2014 ◽  
Vol 12 (8) ◽  
Author(s):  
David Buhagiar ◽  
Emmanuel Chetcuti ◽  
Hans Weber
Keyword(s):  

AbstractWe study the behaviour of ℵ-compactness, extent and Lindelöf number in lexicographic products of linearly ordered spaces. It is seen, in particular, that for the case that all spaces are bounded all these properties behave very well when taking lexicographic products. We also give characterizations of these notions for generalized ordered spaces.



2013 ◽  
Vol 1 ◽  
pp. 37-45 ◽  
Author(s):  
Iván Sánchez

AbstractWe show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf number. We also prove that every Hausdorff paratopological group with countable π- character has a regular Gσ-diagonal.





1996 ◽  
Vol 39 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Jan Baars ◽  
Helma Gladdines

AbstractLet X and Y be Tychonov spaces and suppose there exists a continuous linear bijection from Cp(X)to CP(Y). In this paper we develop a method that enables us to compare the Lindelöf number of Y with the Lindelöf number of some dense subset Z of X. As a corollary we get that if for perfect spaces X and Y, CP(X) and Cp(Y)are linearly homeomorphic, then the Lindelöf numbers of Jf and Fare equal. Another result in this paper is the following. Let X and Y be any two linearly ordered perfect Tychonov spaces such that Cp(X)and Cp(Y)are linearly homeomorphic. Let be a topological property that is closed hereditary, closed under taking countable unions and closed under taking continuous images. Then X has isproperty if and only if Y has. As examples of such properties we consider certain cardinal functions.



Sign in / Sign up

Export Citation Format

Share Document