scholarly journals The cohomology of the Steenrod algebra; stable homotopy groups of spheres

1965 ◽  
Vol 71 (2) ◽  
pp. 377-381 ◽  
Author(s):  
J. Peter May
1964 ◽  
Vol 60 (3) ◽  
pp. 409-420 ◽  
Author(s):  
C. R. F. Maunder

In this paper, we shall prove a result which identifies the differentials in the Adams spectral sequence (see (1,2)) with certain cohomology operations of higher kinds, in the sense of (4). This theorem will be stated precisely at the end of section 2, after a summary of the necessary information about the Adams spectral sequence and higher-order cohomology operations; the proof will follow in section 3. Finally, in section 4, we shall consider, by way of example, the Adams spectral sequence for the stable homotopy groups of spheres: we show how our theorem gives a proof of Liulevicius's result that , where the elements hn (n ≥ 0) are base elements ofcorresponding to the elements Sq2n in A, the mod 2 Steenrod algebra.


2008 ◽  
Vol 39 (1) ◽  
pp. 75-83
Author(s):  
Liu Xiugui ◽  
Jin Yinglong

To determine the stable homotopy groups of spheres is one of the central problems in homotopy theory. Let $ A $ be the mod $ p $ Steenrod algebra and $S$ the sphere spectrum localized at an odd prime $ p $. In this article, it is proved that for $ p\geqslant 7 $, $ n\geqslant 4 $ and $ 3\leqslant s $, $ b_0 h_1 h_n \tilde{\gamma}_{s} \in Ext_A^{s+4,\ast}(\mathbb{Z}_p,\mathbb{Z}_p) $ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element of order $ p $ in the stable homotopy groups of spheres $ \pi_{p^nq+sp^{2}q+(s+1)pq+(s-2)q-7}S $, where $ q=2(p-1 ) $.


Author(s):  
Hans-Joachim Baues ◽  
Mamuka Jibladze

AbstractWe describe the dualization of the algebra of secondary cohomology operations in terms of generators extending the Milnor dual of the Steenrod algebra. In this way we obtain explicit formulæ for the computation of the E3-term of the Adams spectral sequence converging to the stable homotopy groups of spheres.


1987 ◽  
Vol 101 (3) ◽  
pp. 477-485 ◽  
Author(s):  
Wen-Hsiung Lin

The classical Adams spectral sequence [1] has been an important tool in the computation of the stable homotopy groups of spheres . In this paper we make another contribution to this computation.


1978 ◽  
Vol 30 (01) ◽  
pp. 45-53 ◽  
Author(s):  
Donald M. Davis

The Brown-Peterson spectrum BP has been used recently to establish some new information about the stable homotopy groups of spheres [9; 11]. The best results have been achieved by using the associated homology theory BP* ( ), the Hopf algebra BP*(BP), and the Adams-Novikov spectral sequence


Sign in / Sign up

Export Citation Format

Share Document