scholarly journals On nowhere differentiable functions being a convolution of continuous functions

1965 ◽  
Vol 16 (1) ◽  
pp. 97-97
Author(s):  
Witold Bogdanowicz
Author(s):  
Adel N. Boules

The chapter is an extensive account of the metric topology and is a prerequisite for all the subsequent chapters. The leading sections develop the basic metric properties such as closure and interior, continuity and equivalent metrics, separation properties, product spaces, and countability axioms. This is followed by a detailed study of completeness, compactness, local compactness, and function spaces. Chapter applications include contraction mappings, continuous nowhere differentiable functions, space-filling curves, closed convex subsets of ?n, and a number of approximation results. The chapter concludes with a detailed section on orthogonal polynomials and Fourier series of continuous functions, which, together with section 3.7, provides an excellent background for Hilbert spaces. The study of sequence and function spaces in this chapter leads up gradually into Banach spaces.


Fractals ◽  
2017 ◽  
Vol 25 (05) ◽  
pp. 1750048 ◽  
Author(s):  
Y. S. LIANG

The present paper mainly investigates the definition and classification of one-dimensional continuous functions on closed intervals. Continuous functions can be classified as differentiable functions and nondifferentiable functions. All differentiable functions are of bounded variation. Nondifferentiable functions are composed of bounded variation functions and unbounded variation functions. Fractal dimension of all bounded variation continuous functions is 1. One-dimensional unbounded variation continuous functions may have finite unbounded variation points or infinite unbounded variation points. Number of unbounded variation points of one-dimensional unbounded variation continuous functions maybe infinite and countable or uncountable. Certain examples of different one-dimensional continuous functions have been given in this paper. Thus, one-dimensional continuous functions are composed of differentiable functions, nondifferentiable continuous functions of bounded variation, continuous functions with finite unbounded variation points, continuous functions with infinite but countable unbounded variation points and continuous functions with uncountable unbounded variation points. In the end of the paper, we give an example of one-dimensional continuous function which is of unbounded variation everywhere.


2000 ◽  
Vol 37 (3) ◽  
pp. 765-777 ◽  
Author(s):  
José A. Adell ◽  
Alberto Lekuona

In this paper, we consider positive linear operators L representable in terms of stochastic processes Z having right-continuous non-decreasing paths. We introduce the equivalent notions of derived operator and derived process of order n of L and Z, respectively. When acting on absolutely continuous functions of order n, we obtain a Taylor's formula of the same order for such operators, thus extending to a positive linear operator setting the classical Taylor's formula for differentiable functions. It is also shown that the operators satisfying Taylor's formula are those which preserve generalized convexity of order n. We illustrate the preceding results by considering discrete time processes, counting and renewal processes, centred subordinators and the Yule birth process.


2019 ◽  
Vol 160 (2) ◽  
pp. 343-359 ◽  
Author(s):  
Y. Fujita ◽  
N. Hamamuki ◽  
A. Siconolfi ◽  
N. Yamaguchi

1993 ◽  
Vol 04 (04) ◽  
pp. 601-673 ◽  
Author(s):  
LARRY B. SCHWEITZER

Let A be a dense Fréchet *-subalgebra of a C*-algebra B. (We do not require Fréchet algebras to be m-convex.) Let G be a Lie group, not necessarily connected, which acts on both A and B by *-automorphisms, and let σ be a sub-polynomial function from G to the nonnegative real numbers. If σ and the action of G on A satisfy certain simple properties, we define a dense Fréchet *-subalgebra G ⋊σ A of the crossed product L1 (G, B). Our algebra consists of differentiable A-valued functions on G, rapidly vanishing in σ. We give conditions on σ and the action of G on A which imply the m-convexity of the dense subalgebra G ⋊σ A. A locally convex algebra is said to be m-convex if there is a family of submultiplicative seminorms for the topology of the algebra. The property of m-convexity is important for a Fréchet algebra, and is useful in modern operator theory. If G acts as a transformation group on a locally compact space M, we develop a class of dense subalgebras for the crossed product L1 (G, C0 (M)), where C0 (M) denotes the continuous functions on M vanishing at infinity with the sup norm topology. We define Schwartz functions S (M) on M, which are differentiable with respect to some group action on M, and are rapidly vanishing with respect to some scale on M. We then form a dense Fréchet *-subalgebra G ⋊σ S (M) of rapidly vanishing, G-differentiable functions from G to S (M). If the reciprocal of σ is in Lp (G) for some p, we prove that our group algebras Sσ (G) are nuclear Fréchet spaces, and that G ⋊σ A is the projective completion [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document