probabilistic point
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Nikos Halidias

In this note we study the binomial model applied to European, American and Bermudan type of derivatives. Our aim is to give the necessary and sufficient conditions under which we can define a fair value via replicating portfolios for any derivative using simple mathematical arguments and without using no arbitrage techniques. Giving suitable definitions we are able to define rigorously the fair value of any derivative without using concepts from probability theory or stochastic analysis therefore is suitable for students or young researchers. It will be clear in our analysis that if $e^{r \delta} \notin [d,u]$ then we can not define a fair value by any means for any derivative while if $d \leq e^{r \delta} \leq u$ we can. Therefore the definition of the fair value of a derivative is not so closely related with the absence of arbitrage. In the usual probabilistic point of view we assume that $d < e^{r \delta} < u$ in order to define the fair value but it is not clear what we can (or we can not) do in the cases where $e^{r \delta} \leq d$ or $e^{r \delta} \geq u$.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1971
Author(s):  
Ángel De La Rosa ◽  
Gonzalo Ruiz ◽  
Enrique Castillo ◽  
Rodrigo Moreno

We present a new focus for the Krieger–Dougherty equation from a probabilistic point of view. This equation allows the calculation of dynamic viscosity in suspensions of various types, like cement paste and self-compacting mortar/concrete. The physical meaning of the parameters that intervene in the equation (maximum packing fraction of particles and intrinsic viscosity), together with the random nature associated with these systems, make the application of the Bayesian analysis desirable. This analysis permits the transformation of parametric-deterministic models into parametric-probabilistic models, which improves and enriches their results. The initial limitations of the Bayesian methods, due to their complexity, have been overcome by numerical methods (Markov Chain Monte Carlo and Gibbs Sampling) and the development of specific software (OpenBUGS). Here we use it to compute the probability density functions that intervene in the Krieger–Dougherty equation applied to the calculation of viscosity in several cement pastes, self-compacting mortars, and self-compacting concretes. The dynamic viscosity calculations made with the Bayesian distributions are significantly better than those made with the theoretical values.


Signals ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 159-173
Author(s):  
Simone Fontana ◽  
Domenico Giorgio Sorrenti

Probabilistic Point Clouds Registration (PPCR) is an algorithm that, in its multi-iteration version, outperformed state-of-the-art algorithms for local point clouds registration. However, its performances have been tested using a fixed high number of iterations. To be of practical usefulness, we think that the algorithm should decide by itself when to stop, on one hand to avoid an excessive number of iterations and waste computational time, on the other to avoid getting a sub-optimal registration. With this work, we compare different termination criteria on several datasets, and prove that the chosen one produces very good results that are comparable to those obtained using a very large number of iterations, while saving computational time.


Author(s):  
Armand Azonnahin

Let f : V → V be a Cohomological Expanding Mapping1 of a smooth complex compact homogeneous manifold with $ dim_{\mathbb{C}}(\Vc)=k \ge 1$ and Kodaira Dimension $\leq 0$. We study the dynamics of such mapping from a probabilistic point of view, that is, we describe the asymptotic behavior of the orbit $ O_{h} (x) = \{h^{n} (x), n \in \mathbb{N} \quad \mbox{or}\quad \mathbb{Z}\}$ of a generic point. Using pluripotential methods, we have constructed in our previous paper \cite{Armand4} a natural invariant canonical probability measure of maximal Cohomological Entropy $ \nu_{h} $ such that ${\chi_{2l}^{-m}} (h^m)^\ast \Omega \to \nu_h \qquad \mbox{as} \quad m\to\infty$ for each smooth probability measure $\Omega $ in $\Vc$ . We have also studied the main stochastic properties of $ \nu_{h}$ and have shown that $ \nu_{h}$ is a smooth equilibrium measure , ergodic, mixing, K-mixing, exponential-mixing. In this paper we are interested on equidistribution problems and we show in particular that $ \nu_{h}$ reflects a property of equidistribution of periodic points by setting out the Third and Fourth Main Results in our study. Finally we conjecture that $$\nu_h:=T_l^+ \wedge T_{k-l}^-,$$ $$\dim_\HH(\nu_h)= \Psi h_{\chi}(h) , $$ $$\dim_\HH( \mbox{Supp} T_l^+) \geq 2(k-l) + \frac{\log \chi_{2l}}{\psi_l},$$ $$|\langle \nu_m^x-\nu_h,\zeta\rangle|\leq M \Big[1+\log^+{1\over D(x,\Tc)}\Big]^{\beta/2}\|\zeta\|_{\Cc^\beta} \gamma^{-\beta m/2}$$ and $$|\langle \nu_m^x-\nu_h,\zeta\rangle|\leq M \Big[1 +\log^+{1\over D(x,E_\gamma)}\Big]^{\beta/2}\|\zeta\|_{\Cc^\beta} \gamma^{-\beta m/2}.$$


Author(s):  
Armand Azonnahin

Let $f:V\rightarrow V $ be a Cohomological Expanding Mapping1 of a smooth complex compact homogeneous manifold with dimC(V) = k ≥ 1 and Kodaira Dimension $\leq 0$. We study the dynamics of such mapping from a probabilistic point of view, that is, we describe the asymptotic behavior of the orbit $ O_{f} (x) = \{f^{n} (x), n \in \mathbb{N} \quad \mbox{or}\quad \mathbb{Z}\}$ of a generic point. Using pluripotential methods, we construct a natural invariant canonical probability measure of maximum Cohomological Entropy $ \mu_{f} $ such that ${\chi_{2l}^{-m}} (f^m)^\ast \Omega \to \mu_f \qquad \mbox{as} \quad m\to\infty$ for each smooth probability measure $\Omega $ on V . Then we study the main stochastic properties of $ \mu_{f}$ and show that $ \mu_{f}$ is a measure of equilibrium, smooth, ergodic, mixing, K-mixing, exponential-mixing and the unique measure with maximum Cohomological Entropy. We also conjectured that $\mu_f:=T_l^+ \wedge T_{k-l}^-$, $\dim_\H(\mu_f)= \Psi h_{\chi}(f) $ and $\dim_\H( \mbox{Supp} T_l^+) \geq 2(k-l) + \frac{\log \chi_{2l}}{\psi_l}.$


Sign in / Sign up

Export Citation Format

Share Document