Fundamentals of Mathematical Analysis
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 8)

H-INDEX

0
(FIVE YEARS 0)

Published By Oxford University Press

9780198868781, 9780191905254

Author(s):  
Adel N. Boules

The first four sections of this chapter form its core and include classical topics such as bounded linear transformations, the open mapping theorem, the closed graph theorem, the uniform boundedness principle, and the Hahn-Banach theorem. The chapter includes a good number of applications of the four fundamental theorems of functional analysis. Sections 6.5 and 6.6 provide a good account of the properties of the spectrum and adjoint operators on Banach spaces. They may be largely bypassed, since the treatment of the corresponding topics for operators on Hilbert spaces in chapter 7 is self-contained. The section on weak topologies is more advanced and may be omitted if a brief introduction is the goal. The chapter is enriched by such topics as the best polynomial approximation, the Hilbert cube, Gelfand’s theorem, Schauder bases, complemented subspaces, and the Banach-Alaoglu theorem.


Author(s):  
Adel N. Boules

The Lebesgue measure on ?n (presented in section 8.4) is a pivotal component of this chapter. The approach in the chapter is to extend the positive linear functional provided by the Riemann integral on the space of continuous, compactly supported functions on ?n (presented in section 8.1). An excursion on Radon measures is included at the end of section 8.4. The rest of the sections are largely independent of sections 8.1 and 8.4 and constitute a deep introduction to general measure and integration theories. Topics include measurable spaces and measurable functions, Carathéodory’s theorem, abstract integration and convergence theorems, complex measures and the Radon-Nikodym theorem, Lp spaces, product measures and Fubini’s theorem, and a good collection of approximation theorems. The closing section of the book provides a glimpse of Fourier analysis and gives a nice conclusion to the discussion of Fourier series and orthogonal polynomials started in section 4.10.


Author(s):  
Adel N. Boules

The first three sections of this chapter provide a thorough presentation of the concepts of basis and dimension. The approach is unified in the sense that it does not treat finite and infinite-dimensional spaces separately. Important concepts such as algebraic complements, quotient spaces, direct sums, projections, linear functionals, and invariant subspaces make their first debut in section 3.4. Section 3.5 is a brief summary of matrix representations and diagonalization. Then the chapter introduces normed linear spaces followed by an extensive study of inner product spaces. The presentation of inner product spaces in this section and in section 4.10 is not limited to finite-dimensional spaces but rather to the properties of inner products that do not require completeness. The chapter concludes with the finite-dimensional spectral theory.


Author(s):  
Adel N. Boules

The chapter is an extensive account of the metric topology and is a prerequisite for all the subsequent chapters. The leading sections develop the basic metric properties such as closure and interior, continuity and equivalent metrics, separation properties, product spaces, and countability axioms. This is followed by a detailed study of completeness, compactness, local compactness, and function spaces. Chapter applications include contraction mappings, continuous nowhere differentiable functions, space-filling curves, closed convex subsets of ?n, and a number of approximation results. The chapter concludes with a detailed section on orthogonal polynomials and Fourier series of continuous functions, which, together with section 3.7, provides an excellent background for Hilbert spaces. The study of sequence and function spaces in this chapter leads up gradually into Banach spaces.


Author(s):  
Adel N. Boules

The first eight sections of this chapter constitute its core and are generally parallel to the leading sections of chapter 4. Most of the sections are brief and emphasize the nonmetric aspects of topology. Among the topics treated are normality, regularity, and second countability. The proof of Tychonoff’s theorem for finite products appears in section 8. The section on locally compact spaces is the transition between the core of the chapter and the more advanced sections on metrization, compactification, and the product of infinitely many spaces. The highlights include the one-point compactification, the Urysohn metrization theorem, and Tychonoff’s theorem. Little subsequent material is based on the last three sections. At various points in the book, it is explained how results stated for the metric case can be extended to topological spaces, especially locally compact Hausdorff spaces. Some such results are developed in the exercises.


Author(s):  
Adel N. Boules

The chapter is a concise, practical presentation of the basics of set theory. The topics include set equivalence, countability, partially ordered, linearly ordered, and well-ordered sets, the axiom of choice, and Zorn’s lemma, as well as cardinal numbers and cardinal arithmetic. The first two sections are essential for a proper understanding of the rest of the book. In particular, a thorough understanding of countability and Zorn’s lemma are indispensable. Parts of the section on cardinal numbers may be included, but only an intuitive understanding of cardinal numbers is sufficient to follow such topics as the discussion on the existence of a vector space of arbitrary (infinite) dimension, and the existence of inseparable Hilbert spaces. Cardinal arithmetic can be omitted since its applications later in the book are limited. Ordinal numbers have been carefully avoided.


Author(s):  
Adel N. Boules

In addition to giving a very brief reminder of set notation and basic set operations, this chapter provides a brief refresher on basic mathematical concepts. The natural, rational and real number systems are taken for granted. However, it does develop at length the Cauchy criterion and its equivalence to the completeness of the real line, and the Bolzano-Weierstrass theorem, as well as the complex number field, including its completeness. Embryonic manifestations of completeness and compactness can be seen in this chapter. Examples include the nested interval theorem and the uniform continuity of continuous functions on compact intervals, and the proof of the Heine-Borel theorem in chapter 4 is squarely based on the Bolzano-Weierstrass property of bounded sets.


Author(s):  
Adel N. Boules

This chapter is a good introduction to Hilbert spaces and the elements of operator theory. The two leading sections contains staple topics such as the projection theorem, projection operators, the Riesz representation theorem, Bessel’s inequality, and the characterization of separable Hilbert spaces. Sections 7.3 and 7.4 contain a rather detailed study of self-adjoint and compact operators. Among the highlights are the Fredholm theory and the spectral theorems for compact self-adjoint and normal operators, with applications to integral equations. The section exercises contain problems that suggest alternative approaches, thus allowing the instructor to shorten the chapter while preserving good depth. The last section extends the results to compact operators on Banach spaces. The chapter contains more results than is typically found in an introductory course.


Sign in / Sign up

Export Citation Format

Share Document