dense subalgebra
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Giuseppe De Nittis ◽  
Maximiliano Sandoval

Abstract In this work we study the differential aspects of the noncommutative geometry for the magnetic C*-algebra which is a 2-cocycle deformation of the group C*-algebra of R2. This algebra is intimately related to the study of the Quantum Hall Effect in the continuous, and our results aim to provide a new geometric interpretation of the related Kubo's formula. Taking inspiration from the ideas developed by Bellissard during the 80's, we build an appropriate Fredholm module for the magnetic C*-algebra based on the magnetic Dirac operator which is the square root (à la Dirac) of the quantum harmonic oscillator. Our main result consist of establishing an important piece of Bellissard's theory, the so-called second Connes' formula. In order to do so, we establish the equality of three cyclic 2-cocycles defined on a dense subalgebra of the magnetic C*-algebra. Two of these 2-cocycles are new in the literature and are defined by Connes' quantized differential calculus, with the use of the Dixmier trace and the magnetic Dirac operator.



2020 ◽  
Vol 57 (3) ◽  
pp. 321-371
Author(s):  
Tarek Sayed Ahmed

AbstractFix 2 < n < ω and let CAn denote the class of cyindric algebras of dimension n. Roughly CAn is the algebraic counterpart of the proof theory of first order logic restricted to the first n variables which we denote by Ln. The variety RCAn of representable CAns reflects algebraically the semantics of Ln. Members of RCAn are concrete algebras consisting of genuine n-ary relations, with set theoretic operations induced by the nature of relations, such as projections referred to as cylindrifications. Although CAn has a finite equational axiomatization, RCAn is not finitely axiomatizable, and it generally exhibits wild, often unpredictable and unruly behavior. This makes the theory of CAn substantially richer than that of Boolean algebras, just as much as Lω,ω is richer than propositional logic. We show using a so-called blow up and blur construction that several varieties (in fact infinitely many) containing and including the variety RCAn are not atom-canonical. A variety V of Boolean algebras with operators is atom canonical, if whenever 𝔄 is atomic, then its Dedekind-MacNeille completion, sometimes referred to as its minimal completion, is also in V. From our hitherto obtained algebraic results we show, employing the powerful machinery of algebraic logic, that the celebrated Henkin-Orey omitting types theorem, which is one of the classical first (historically) cornerstones of model theory of Lω,ω, fails dramatically for Ln even if we allow certain generalized models that are only locallly clasfsical. It is also shown that any class K such that , where CRCAn is the class of completely representable CAns, and Sc denotes the operation of forming dense (complete) subalgebras, is not elementary. Finally, we show that any class K such that is not elementary, where Sd denotes the operation of forming dense subalgebra.



Author(s):  
Adam Skalski ◽  
Ami Viselter

Abstract Every symmetric generating functional of a convolution semigroup of states on a locally compact quantum group is shown to admit a dense unital *-subalgebra with core-like properties in its domain. On the other hand we prove that every normalised, symmetric, hermitian conditionally positive functional on a dense *-subalgebra of the unitisation of the universal C$^*$-algebra of a locally compact quantum group, satisfying certain technical conditions, extends in a canonical way to a generating functional. Some consequences of these results are outlined, notably those related to constructing cocycles out of convolution semigroups.



2018 ◽  
Vol 2018 (745) ◽  
pp. 189-229 ◽  
Author(s):  
Heath Emerson ◽  
Bogdan Nica

Abstract Motivated by classical facts concerning closed manifolds, we introduce a strong finiteness property in K-homology. We say that a \mathrm{C}^{*} -algebra has uniformly summable K-homology if all its K-homology classes can be represented by Fredholm modules which are finitely summable over the same dense subalgebra, and with the same degree of summability. We show that two types of \mathrm{C}^{*} -algebras associated to hyperbolic groups – the \mathrm{C}^{*} -crossed product for the boundary action, and the reduced group \mathrm{C}^{*} -algebra – have uniformly summable K-homology. We provide explicit summability degrees, as well as explicit finitely summable representatives for the K-homology classes.



2018 ◽  
Vol 10 (02) ◽  
pp. 355-400 ◽  
Author(s):  
Robin J. Deeley ◽  
Magnus Goffeng ◽  
Bram Mesland

We consider Hilsum’s notion of bordism as an equivalence relation on unbounded [Formula: see text]-cycles and study the equivalence classes. Upon fixing two [Formula: see text]-algebras, and a ∗-subalgebra dense in the first [Formula: see text]-algebra, a [Formula: see text]-graded abelian group is obtained; it maps to the Kasparov [Formula: see text]-group of the two [Formula: see text]-algebras via the bounded transform. We study properties of this map both in general and in specific examples. In particular, it is an isomorphism if the first [Formula: see text]-algebra is the complex numbers (i.e. for [Formula: see text]-theory) and is a split surjection if the first [Formula: see text]-algebra is the continuous functions on a compact manifold with boundary when one uses the Lipschitz functions as the dense ∗-subalgebra.



2016 ◽  
Vol 57 (6) ◽  
pp. 1066-1076
Author(s):  
D. E. Pal’chunov ◽  
A. V. Trofimov


2012 ◽  
Vol 50 (6) ◽  
pp. 553-569 ◽  
Author(s):  
D. E. Pal’chunov ◽  
A. V. Trofimov


2011 ◽  
Vol 54 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Kenneth R. Davidson ◽  
Alex Wright

AbstractWe show that every free semigroup algebra has a (strongly) unique Banach space predual. We also provide a new simpler proof that a weak-∗ closed unital operator algebra containing a weak-∗ dense subalgebra of compact operators has a unique Banach space predual.



2004 ◽  
Vol 2004 (32) ◽  
pp. 1679-1701
Author(s):  
Holger Steiniger

Based on a description of the squares of cofinite primary ideals ofAα+(𝔻), we prove the following results: forα≥1, there exists a derivation fromAα+(𝔻)into a finite-dimensional module such that this derivation is unbounded on every dense subalgebra; form∈ℕandα∈[m,m+1), every finite-dimensional extension ofAα+(𝔻)splits algebraically if and only ifα≥m+1/2.



1998 ◽  
Vol 50 (4) ◽  
pp. 673-718 ◽  
Author(s):  
Alan Carey ◽  
John Phillips

AbstractAn odd unbounded (respectively, p-summable) Fredholm module for a unital Banach *-algebra, A, is a pair (H,D) where A is represented on the Hilbert space, H, and D is an unbounded self-adjoint operator on H satisfying:(1) (1 + D2)-1 is compact (respectively, Trace_(1 + D2)-(p/2)_∞), and(2) ﹛a ∈ A | [D, a] is bounded﹜ is a dense *- subalgebra of A.If u is a unitary in the dense *-subalgebra mentioned in (2) thenuDu* = D + u[D, u*] = D + Bwhere B is a bounded self-adjoint operator. The pathis a “continuous” path of unbounded self-adjoint “Fredholm” operators. More precisely, we show thatis a norm-continuous path of (bounded) self-adjoint Fredholm operators. The spectral flow of this path is roughly speaking the net number of eigenvalues that pass through 0 in the positive direction as t runs from 0 to 1. This integer,recovers the pairing of the K-homology class [D] with the K-theory class [u].We use I.M. Singer's idea (as did E. Getzler in the θ-summable case) to consider the operator B as a parameter in the Banach manifold, Bsa(H), so that spectral flow can be exhibited as the integral of a closed 1-formon this manifold. Now, for B in ourmanifold, any X ∈ TB_Bsa(H)_ is given by an X in Bsa(H) as the derivative at B along the curve t→ B + tX in the manifold. Then we show that for m a sufficiently large half-integer:is a closed 1-form. For any piecewise smooth path {Dt = D + Bt} with D0 and D1 unitarily equivalent we show thatthe integral of the 1-form ã. If D0 and D1 are not unitarily equivalent, wemust add a pair of correction terms to the right-hand side. We also prove a bounded finitely summable version of the form:for an integer. The unbounded case is proved by reducing to the bounded case via the map . We prove simultaneously a type II version of our results.



Sign in / Sign up

Export Citation Format

Share Document