scholarly journals On $K3$ surfaces which dominate Kummer surfaces

2012 ◽  
Vol 141 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Shouhei Ma
Keyword(s):  
Author(s):  
Julian Lawrence Demeio

Abstract For a number field $K$, an algebraic variety $X/K$ is said to have the Hilbert Property if $X(K)$ is not thin. We are going to describe some examples of algebraic varieties, for which the Hilbert Property is a new result. The first class of examples is that of smooth cubic hypersurfaces with a $K$-rational point in ${\mathbb{P}}_n/K$, for $n \geq 3$. These fall in the class of unirational varieties, for which the Hilbert Property was conjectured by Colliot-Thélène and Sansuc. We then provide a sufficient condition for which a surface endowed with multiple elliptic fibrations has the Hilbert Property. As an application, we prove the Hilbert Property of a class of K3 surfaces, and some Kummer surfaces.


1990 ◽  
Vol 118 ◽  
pp. 99-110 ◽  
Author(s):  
Jong Hae Keum

A Kummer surface is the minimal desingularization of the surface T/i, where T is a complex torus of dimension 2 and i the involution automorphism on T. T is an abelian surface if and only if its associated Kummer surface is algebraic. Kummer surfaces are among classical examples of K3-surfaces (which are simply-connected smooth surfaces with a nowhere-vanishing holomorphic 2-form), and play a crucial role in the theory of K3-surfaces. In a sense, all Kummer surfaces (resp. algebraic Kummer surfaces) form a 4 (resp. 3)-dimensional subset in the 20 (resp. 19)-dimensional family of K3-surfaces (resp. algebraic K3 surfaces).


Author(s):  
Yusuke Kimura

In this study, we construct four-dimensional F-theory models with 3 to 8 U(1) factors on products of K3 surfaces. We provide explicit Weierstrass equations of elliptic K3 surfaces with Mordell–Weil ranks of 3 to 8. We utilize the method of quadratic base change to glue pairs of rational elliptic surfaces together to yield the aforementioned types of K3 surfaces. The moduli of elliptic K3 surfaces constructed in the study include Kummer surfaces of specific complex structures. We show that the tadpole cancels in F-theory compactifications with flux when these Kummer surfaces are paired with appropriately selected attractive K3 surfaces. We determine the matter spectra on F-theory on the pairs.


2011 ◽  
Vol 228 (5) ◽  
pp. 2688-2730 ◽  
Author(s):  
Allen J. Stewart ◽  
Vadim Vologodsky
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
L. Göttsche ◽  
M. Kool ◽  
R. A. Williams

Abstract We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many examples (for example, on K3 surfaces).


2021 ◽  
Vol 9 ◽  
Author(s):  
Younghan Bae ◽  
Tim-Henrik Buelles

Abstract We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3 surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2. Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double ramification relations with target variety as a new tool to prove the initial condition. The relationship between the holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and Pandharipande is discussed in detail and illustrated with several examples.


Author(s):  
Alice Garbagnati

Abstract We discuss the birational geometry and the Kodaira dimension of certain varieties previously constructed by Schreieder, proving that in any dimension they admit an elliptic fibration and they are not of general type. The $l$-dimensional variety $Y_{(n)}^{(l)}$, which is the quotient of the product of a certain curve $C_{(n)}$ by itself $l$ times by a group $G\simeq \left ({\mathbb{Z}}/n{\mathbb{Z}}\right )^{l-1}$ of automorphisms, was constructed by Schreieder to obtain varieties with prescribed Hodge numbers. If $n=3^c$ Schreieder constructed an explicit smooth birational model of it, and Flapan proved that the Kodaira dimension of this smooth model is 1, if $c>1$; if $l=2$ it is a modular elliptic surface; if $l=3$ it admits a fibration in K3 surfaces. In this paper we generalize these results: without any assumption on $n$ and $l$ we prove that $Y_{(n)}^{(l)}$ admits many elliptic fibrations and its Kodaira dimension is at most 1. Moreover, if $l=2$, its minimal resolution is a modular elliptic surface, obtained by a base change of order $n$ on a specific extremal rational elliptic surface; if $l\geq 3$ it has a birational model that admits a fibration in K3 surfaces and a fibration in $(l-1)$-dimensional varieties of Kodaira dimension at most 0.


2021 ◽  
Vol 21 (2) ◽  
pp. 221-225
Author(s):  
Taro Hayashi

Abstract General K3 surfaces obtained as double covers of the n-th Hirzebruch surfaces with n = 0, 1, 4 are not double covers of other smooth surfaces. We give a criterion for such a K3 surface to be a double covering of another smooth rational surface based on the branch locus of double covers and fibre spaces of Hirzebruch surfaces.


Sign in / Sign up

Export Citation Format

Share Document