scholarly journals The Bergman metric and the pluricomplex Green function

2005 ◽  
Vol 357 (7) ◽  
pp. 2613-2625 ◽  
Author(s):  
Zbigniew Błocki
2002 ◽  
Vol 168 ◽  
pp. 27-40 ◽  
Author(s):  
Bo-Yong Chen

AbstractLet Ω be a bounded pseudoconvex domain in Cn. We give sufficient conditions for the Bergman metric to go to infinity uniformly at some boundary point, which is stated by the existence of a Hölder continuous plurisubharmonic peak function at this point or the verification of property (P) (in the sense of Coman) which is characterized by the pluricomplex Green function.


2003 ◽  
Vol 171 ◽  
pp. 107-125 ◽  
Author(s):  
Gregor Herbort

AbstractLet D be a bounded pseudoconvex domain in ℂn and ζ ∈ D. By KD and BD we denote the Bergman kernel and metric of D, respectively. Given a ball B = B(ζ, R), we study the behavior of the ratio KD/KD∩B(w) when w ∈ D ∩ B tends towards ζ. It is well-known, that it remains bounded from above and below by a positive constant. We show, that the ratio tends to 1, as w tends to ζ, under an additional assumption on the pluricomplex Green function D(·, w) of D with pole at w, namely that the diameter of the sublevel sets Aw :={z ∈ D | D(z, w) < −1} tends to zero, as w → ζ. A similar result is obtained also for the Bergman metric. In this case we also show that the extremal function associated to the Bergman kernel has the concentration of mass property introduced in [DiOh1], where the question was discussed how to recognize a weight function from the associated Bergman space. The hypothesis concerning the set Aw is satisfied for example, if the domain is regular in the sense of Diederich-Fornæss, ([DiFo2]).


2012 ◽  
Vol 23 (06) ◽  
pp. 1250065 ◽  
Author(s):  
JÓN I. MAGNÚSSON ◽  
ALEXANDER RASHKOVSKII ◽  
RAGNAR SIGURDSSON ◽  
PASCAL J. THOMAS

Let Ω be a bounded hyperconvex domain in ℂn, 0 ∈ Ω, and Sε a family of N poles in Ω, all tending to 0 as ε tends to 0. To each Sε we associate its vanishing ideal [Formula: see text] and pluricomplex Green function [Formula: see text]. Suppose that, as ε tends to 0, [Formula: see text] converges to [Formula: see text] (local uniform convergence), and that (Gε)ε converges to G, locally uniformly away from 0; then [Formula: see text]. If the Hilbert–Samuel multiplicity of [Formula: see text] is strictly larger than its length (codimension, equal to N here), then (Gε)ε cannot converge to [Formula: see text]. Conversely, if [Formula: see text] is a complete intersection ideal, then (Gε)ε converges to [Formula: see text]. We work out the case of three poles.


2000 ◽  
Vol 11 (04) ◽  
pp. 509-522 ◽  
Author(s):  
GREGOR HERBORT

In this article we deal with the behavior of the pluricomplex Green function GD(·;w), of a pseudoconvex domain D in [Formula: see text], when the pole tends to a boundary point. In [7], it was shown that, given a boundary point w0 of a hyperconvex domain D, then there is a pluripolar set E⊂D, such that lim sup w→w0 GD(z;w)=0 for z∈D\E. Under an additional assumption on D, that can be viewed as natural, one can avoid the pluripolar exceptional set. Our main result is that on a bounded domain [Formula: see text] that admits a Hoelder continuous plurisubharmonic exhaustion function ρ:D→[-1,0), the pluricomplex Green function GD(·,w) tends to zero uniformly on compact subsets of D, if the pole w tends to a boundary point w0 of D.


Sign in / Sign up

Export Citation Format

Share Document