bergman metric
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 0)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Nikolay Shcherbina

Abstract We prove that for a pseudoconvex domain of the form $${\mathfrak {A}} = \{(z, w) \in {\mathbb {C}}^2 : v > F(z, u)\}$$ A = { ( z , w ) ∈ C 2 : v > F ( z , u ) } , where $$w = u + iv$$ w = u + i v and F is a continuous function on $${\mathbb {C}}_z \times {\mathbb {R}}_u$$ C z × R u , the following conditions are equivalent: The domain $$\mathfrak {A}$$ A is Kobayashi hyperbolic. The domain $$\mathfrak {A}$$ A is Brody hyperbolic. The domain $$\mathfrak {A}$$ A possesses a Bergman metric. The domain $$\mathfrak {A}$$ A possesses a bounded smooth strictly plurisubharmonic function, i.e. the core $$\mathfrak {c}(\mathfrak {A})$$ c ( A ) of $$\mathfrak {A}$$ A is empty. The graph $$\Gamma (F)$$ Γ ( F ) of F can not be represented as a foliation by holomorphic curves of a very special form, namely, as a foliation by translations of the graph $$\Gamma ({\mathcal H})$$ Γ ( H ) of just one entire function $${\mathcal {H}} : {\mathbb {C}}_z \rightarrow {\mathbb {C}}_w$$ H : C z → C w .



Author(s):  
Xiaojun Huang ◽  
Ming Xiao

AbstractWe give an affirmative solution to a conjecture of Cheng proposed in 1979 which asserts that the Bergman metric of a smoothly bounded strongly pseudoconvex domain in {\mathbb{C}^{n},n\geq 2}, is Kähler–Einstein if and only if the domain is biholomorphic to the ball. We establish a version of the classical Kerner theorem for Stein spaces with isolated singularities which has an immediate application to construct a hyperbolic metric over a Stein space with a spherical boundary.



2020 ◽  
Vol 30 (2) ◽  
pp. 1238-1258
Author(s):  
Gautam Bharali
Keyword(s):  


2019 ◽  
Vol 30 (14) ◽  
pp. 1950071
Author(s):  
Anilatmaja Aryasomayajula ◽  
Indranil Biswas

Let [Formula: see text] be a compact hyperbolic Riemann surface equipped with the Poincaré metric. For any integer [Formula: see text], we investigate the Bergman kernel associated to the holomorphic Hermitian line bundle [Formula: see text], where [Formula: see text] is the holomorphic cotangent bundle of [Formula: see text]. Our first main result estimates the corresponding Bergman metric on [Formula: see text] in terms of the Poincaré metric. We then consider a certain natural embedding of the symmetric product of [Formula: see text] into a Grassmannian parametrizing subspaces of fixed dimension of the space of all global holomorphic sections of [Formula: see text]. The Fubini–Study metric on the Grassmannian restricts to a Kähler metric on the symmetric product of [Formula: see text]. The volume form for this restricted metric on the symmetric product is estimated in terms of the Bergman kernel of [Formula: see text] and the volume form for the orbifold Kähler form on the symmetric product given by the Poincaré metric on [Formula: see text].



2019 ◽  
Vol 48 (1) ◽  
pp. 1-10
Author(s):  
Dau The Phiet ◽  
Ninh Van Thu


2018 ◽  
Vol 111 (5) ◽  
pp. 503-511
Author(s):  
Arkadiusz Lewandowski




2018 ◽  
Vol 22 (2) ◽  
pp. 291-298 ◽  
Author(s):  
K. Diederich ◽  
J. E. Fornæss




Sign in / Sign up

Export Citation Format

Share Document