scholarly journals Boundary behavior of the Bergman metric

2002 ◽  
Vol 168 ◽  
pp. 27-40 ◽  
Author(s):  
Bo-Yong Chen

AbstractLet Ω be a bounded pseudoconvex domain in Cn. We give sufficient conditions for the Bergman metric to go to infinity uniformly at some boundary point, which is stated by the existence of a Hölder continuous plurisubharmonic peak function at this point or the verification of property (P) (in the sense of Coman) which is characterized by the pluricomplex Green function.

2000 ◽  
Vol 11 (04) ◽  
pp. 509-522 ◽  
Author(s):  
GREGOR HERBORT

In this article we deal with the behavior of the pluricomplex Green function GD(·;w), of a pseudoconvex domain D in [Formula: see text], when the pole tends to a boundary point. In [7], it was shown that, given a boundary point w0 of a hyperconvex domain D, then there is a pluripolar set E⊂D, such that lim sup w→w0 GD(z;w)=0 for z∈D\E. Under an additional assumption on D, that can be viewed as natural, one can avoid the pluripolar exceptional set. Our main result is that on a bounded domain [Formula: see text] that admits a Hoelder continuous plurisubharmonic exhaustion function ρ:D→[-1,0), the pluricomplex Green function GD(·,w) tends to zero uniformly on compact subsets of D, if the pole w tends to a boundary point w0 of D.


2003 ◽  
Vol 171 ◽  
pp. 107-125 ◽  
Author(s):  
Gregor Herbort

AbstractLet D be a bounded pseudoconvex domain in ℂn and ζ ∈ D. By KD and BD we denote the Bergman kernel and metric of D, respectively. Given a ball B = B(ζ, R), we study the behavior of the ratio KD/KD∩B(w) when w ∈ D ∩ B tends towards ζ. It is well-known, that it remains bounded from above and below by a positive constant. We show, that the ratio tends to 1, as w tends to ζ, under an additional assumption on the pluricomplex Green function D(·, w) of D with pole at w, namely that the diameter of the sublevel sets Aw :={z ∈ D | D(z, w) < −1} tends to zero, as w → ζ. A similar result is obtained also for the Bergman metric. In this case we also show that the extremal function associated to the Bergman kernel has the concentration of mass property introduced in [DiOh1], where the question was discussed how to recognize a weight function from the associated Bergman space. The hypothesis concerning the set Aw is satisfied for example, if the domain is regular in the sense of Diederich-Fornæss, ([DiFo2]).


2020 ◽  
Vol 17 (3) ◽  
pp. 414-436
Author(s):  
Evgeny Sevost'yanov ◽  
Serhii Skvortsov ◽  
Oleksandr Dovhopiatyi

As known, the modulus method is one of the most powerful research tools in the theory of mappings. Distortion of modulus has an important role in the study of conformal and quasiconformal mappings, mappings with bounded and finite distortion, mappings with finite length distortion, etc. In particular, an important fact is the lower distortion of the modulus under mappings. Such relations are called inverse Poletsky inequalities and are one of the main objects of our study. The use of these inequalities is fully justified by the fact that the inverse inequality of Poletsky is a direct (upper) inequality for the inverse mappings, if there exist. If the mapping has a bounded distortion, then the corresponding majorant in inverse Poletsky inequality is equal to the product of the maximum multiplicity of the mapping on its dilatation. For more general classes of mappings, a similar majorant is equal to the sum of the values of outer dilatations over all preimages of the fixed point. It the class of quasiconformal mappings there is no significance between the inverse and direct inequalities of Poletsky, since the upper distortion of the modulus implies the corresponding below distortion and vice versa. The situation significantly changes for mappings with unbounded characteristics, for which the corresponding fact does not hold. The most important case investigated in this paper refers to the situation when the mappings have an unbounded dilatation. The article investigates the local and boundary behavior of mappings with branching that satisfy the inverse inequality of Poletsky with some integrable majorant. It is proved that mappings of this type are logarithmically Holder continuous at each inner point of the domain. Note that the Holder continuity is slightly weaker than the classical Holder continuity, which holds for quasiconformal mappings. Simple examples show that mappings of finite distortion are not Lipschitz continuous even under bounded dilatation. Another subject of research of the article is boundary behavior of mappings. In particular, a continuous extension of the mappings with the inverse Poletsky inequality is obtained. In addition, we obtained the conditions under which the families of these mappings are equicontinuous inside and at the boundary of the domain. Several cases are considered: when the preimage of a fixed continuum under mappings is separated from the boundary, and when the mappings satisfy normalization conditions. The text contains a significant number of examples that demonstrate the novelty and content of the results. In particular, examples of mappings with branching that satisfy the inverse Poletsky inequality, have unbounded characteristics, and for which the statements of the basic theorems are satisfied, are given.


Author(s):  
Le Mau Hai ◽  
Vu Van Quan

In this paper, we establish existence of Hölder continuous solutions to the complex Monge–Ampère-type equation with measures vanishing on pluripolar subsets of a bounded strictly pseudoconvex domain [Formula: see text] in [Formula: see text].


Author(s):  
Nikolay Shcherbina

Abstract We prove that for a pseudoconvex domain of the form $${\mathfrak {A}} = \{(z, w) \in {\mathbb {C}}^2 : v > F(z, u)\}$$ A = { ( z , w ) ∈ C 2 : v > F ( z , u ) } , where $$w = u + iv$$ w = u + i v and F is a continuous function on $${\mathbb {C}}_z \times {\mathbb {R}}_u$$ C z × R u , the following conditions are equivalent: The domain $$\mathfrak {A}$$ A is Kobayashi hyperbolic. The domain $$\mathfrak {A}$$ A is Brody hyperbolic. The domain $$\mathfrak {A}$$ A possesses a Bergman metric. The domain $$\mathfrak {A}$$ A possesses a bounded smooth strictly plurisubharmonic function, i.e. the core $$\mathfrak {c}(\mathfrak {A})$$ c ( A ) of $$\mathfrak {A}$$ A is empty. The graph $$\Gamma (F)$$ Γ ( F ) of F can not be represented as a foliation by holomorphic curves of a very special form, namely, as a foliation by translations of the graph $$\Gamma ({\mathcal H})$$ Γ ( H ) of just one entire function $${\mathcal {H}} : {\mathbb {C}}_z \rightarrow {\mathbb {C}}_w$$ H : C z → C w .


2008 ◽  
Vol 145 (3) ◽  
pp. 643-667 ◽  
Author(s):  
DANIELA KRAUS ◽  
OLIVER ROTH

AbstractA classical result of Nitsche [22] about the behaviour of the solutions to the Liouville equation Δu= 4e2unear isolated singularities is generalized to solutions of the Gaussian curvature equation Δu= −κ(z)e2uwhere κ is a negative Hölder continuous function. As an application a higher–order version of the Yau–Ahlfors–Schwarz lemma for complete conformal Riemannian metrics is obtained.


Sign in / Sign up

Export Citation Format

Share Document