scholarly journals Orthogonal polynomials with a resolvent-type generating function

2008 ◽  
Vol 360 (08) ◽  
pp. 4125-4143 ◽  
Author(s):  
Michael Anshelevich
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Chuanqing Gu ◽  
Yong Liu

Tensor exponential function is an important function that is widely used. In this paper, tensor Pade´-type approximant (TPTA) is defined by introducing a generalized linear functional for the first time. The expression of TPTA is provided with the generating function form. Moreover, by means of formal orthogonal polynomials, we propose an efficient algorithm for computing TPTA. As an application, the TPTA for computing the tensor exponential function is presented. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.


2011 ◽  
Vol 25 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Juan J. Moreno-Balcázar ◽  
Teresa E. Pérez ◽  
Miguel A. Piñar

10.37236/1927 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Ira M. Gessel ◽  
Pallavi Jayawant

Some of the classical orthogonal polynomials such as Hermite, Laguerre, Charlier, etc. have been shown to be the generating polynomials for certain combinatorial objects. These combinatorial interpretations are used to prove new identities and generating functions involving these polynomials. In this paper we apply Foata's approach to generating functions for the Hermite polynomials to obtain a triple lacunary generating function. We define renormalized Hermite polynomials $h_n(u)$ by $$\sum_{n= 0}^\infty h_n(u) {z^n\over n!}=e^{uz+{z^2\!/2}}.$$ and give a combinatorial proof of the following generating function: $$ \sum_{n= 0}^\infty h_{3n}(u) {{z^n\over n!}}= {e^{(w-u)(3u-w)/6}\over\sqrt{1-6wz}} \sum_{n= 0}^\infty {{(6n)!\over 2^{3n}(3n)!(1-6wz)^{3n}} {z^{2n}\over(2n)!}}, $$ where $w=(1-\sqrt{1-12uz})/6z=uC(3uz)$ and $C(x)=(1-\sqrt{1-4x})/(2x)$ is the Catalan generating function. We also give an umbral proof of this generating function.


2016 ◽  
Vol 10 ◽  
pp. 761-772
Author(s):  
W. Carballosa ◽  
J. C. Hernandez-Gomez ◽  
L. R. Pineiro ◽  
Jose M. Sigarreta

1994 ◽  
Vol 124 (5) ◽  
pp. 1003-1011 ◽  
Author(s):  
Pascal Maroni ◽  
Jeannette Van Iseghem

An orthogonal family of polynomials is given, and a link is made between the special form of the coefficients of their recurrence relation and a first-order linear homogenous partial differential equation satisfied by the associated generating function. A study is also made of the semiclassical character of such families.


Sign in / Sign up

Export Citation Format

Share Document