Generating functions and semi-classical orthogonal polynomials

1994 ◽  
Vol 124 (5) ◽  
pp. 1003-1011 ◽  
Author(s):  
Pascal Maroni ◽  
Jeannette Van Iseghem

An orthogonal family of polynomials is given, and a link is made between the special form of the coefficients of their recurrence relation and a first-order linear homogenous partial differential equation satisfied by the associated generating function. A study is also made of the semiclassical character of such families.

1959 ◽  
Vol 11 ◽  
pp. 148-155 ◽  
Author(s):  
Louis Weisner

On replacing the parameter n in Bessel's differential equation1.1by the operator y(∂/∂y), the partial differential equation Lu = 0 is constructed, where1.2This operator annuls u(x, y) = v(x)yn if, and only if, v(x) satisfies (1.1) and hence is a cylindrical function of order n. Thus every generating function of a set of cylindrical functions is a solution of Lu = 0.It is shown in § 2 that the partial differential equation Lu = 0 is invariant under a three-parameter Lie group. This group is then applied to the systematic determination of generating functions for Bessel functions, following the methods employed in two previous papers (4; 5).


10.37236/1927 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Ira M. Gessel ◽  
Pallavi Jayawant

Some of the classical orthogonal polynomials such as Hermite, Laguerre, Charlier, etc. have been shown to be the generating polynomials for certain combinatorial objects. These combinatorial interpretations are used to prove new identities and generating functions involving these polynomials. In this paper we apply Foata's approach to generating functions for the Hermite polynomials to obtain a triple lacunary generating function. We define renormalized Hermite polynomials $h_n(u)$ by $$\sum_{n= 0}^\infty h_n(u) {z^n\over n!}=e^{uz+{z^2\!/2}}.$$ and give a combinatorial proof of the following generating function: $$ \sum_{n= 0}^\infty h_{3n}(u) {{z^n\over n!}}= {e^{(w-u)(3u-w)/6}\over\sqrt{1-6wz}} \sum_{n= 0}^\infty {{(6n)!\over 2^{3n}(3n)!(1-6wz)^{3n}} {z^{2n}\over(2n)!}}, $$ where $w=(1-\sqrt{1-12uz})/6z=uC(3uz)$ and $C(x)=(1-\sqrt{1-4x})/(2x)$ is the Catalan generating function. We also give an umbral proof of this generating function.


1930 ◽  
Vol 2 (2) ◽  
pp. 71-82 ◽  
Author(s):  
W. L. Ferrar

It is well known that the polynomial in x,has the following properties:—(A) it is the coefficient of tn in the expansion of (1–2xt+t2)–½;(B) it satisfies the three-term recurrence relation(C) it is the solution of the second order differential equation(D) the sequence Pn(x) is orthogonal for the interval (— 1, 1),i.e. whenSeveral other familiar polynomials, e.g., those of Laguerre Hermite, Tschebyscheff, have properties similar to some or all of the above. The aim of the present paper is to examine whether, given a sequence of functions (polynomials or not) which has one of these properties, the others follow from it : in other words we propose to examine the inter-relation of the four properties. Actually we relate each property to the generating function.


Author(s):  
Khalfa Douak

Let{Pn}n≥0be a sequence of 2-orthogonal monic polynomials relative to linear functionalsω0andω1(see Definition 1.1). Now, let{Qn}n≥0be the sequence of polynomials defined byQn:=(n+1)−1P′n+1,n≥0. When{Qn}n≥0is, also, 2-orthogonal,{Pn}n≥0is called “classical” (in the sense of having the Hahn property). In this case, both{Pn}n≥0and{Qn}n≥0satisfy a third-order recurrence relation (see below). Working on the recurrence coefficients, under certain assumptions and well-chosen parameters, a classical family of 2-orthogonal polynomials is presented. Their recurrence coefficients are explicitly determined. A generating function, a third-order differential equation, and a differential-recurrence relation satisfied by these polynomials are obtained. We, also, give integral representations of the two corresponding linear functionalsω0andω1and obtain their weight functions which satisfy a second-order differential equation. From all these properties, we show that the resulting polynomials are an extention of the classical Laguerre's polynomials and establish a connection between the two kinds of polynomials.


10.37236/3051 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Olivier Bodini ◽  
Danièle Gardy ◽  
Bernhard Gittenberger ◽  
Alice Jacquot

We investigate the asymptotic number of elements of size $n$ in a particular class of closed lambda-terms (so-called $BCI(p)$-terms) which are related to axiom systems of combinatory logic. By deriving a differential equation for the generating function of the counting sequence we obtain a recurrence relation which can be solved asymptotically. We derive differential equations for the generating functions of the counting sequences of other more general classes of terms as well: the class of $BCK(p)$-terms and that of closed lambda-terms. Using elementary arguments we obtain upper and lower estimates for the number of closed lambda-terms of size $n$. Moreover, a recurrence relation is derived which allows an efficient computation of the counting sequence. $BCK(p)$-terms are discussed briefly.


2021 ◽  
pp. 1-20
Author(s):  
STEPHEN TAYLOR ◽  
XUESHAN YANG

Abstract The functional partial differential equation (FPDE) for cell division, $$ \begin{align*} &\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t))\\ &\quad = -(b(x,t)+\mu(x,t))n(x,t)+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t), \end{align*} $$ is not amenable to analytical solution techniques, despite being closely related to the first-order partial differential equation (PDE) $$ \begin{align*} \frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t), \end{align*} $$ which, with known $F(x,t)$ , can be solved by the method of characteristics. The difficulty is due to the advanced functional terms $n(\alpha x,t)$ and $n(\beta x,t)$ , where $\beta \ge 2 \ge \alpha \ge 1$ , which arise because cells of size x are created when cells of size $\alpha x$ and $\beta x$ divide. The nonnegative function, $n(x,t)$ , denotes the density of cells at time t with respect to cell size x. The functions $g(x,t)$ , $b(x,t)$ and $\mu (x,t)$ are, respectively, the growth rate, splitting rate and death rate of cells of size x. The total number of cells, $\int _{0}^{\infty }n(x,t)\,dx$ , coincides with the $L^1$ norm of n. The goal of this paper is to find estimates in $L^1$ (and, with some restrictions, $L^p$ for $p>1$ ) for a sequence of approximate solutions to the FPDE that are generated by solving the first-order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper.


2015 ◽  
Vol 47 (1) ◽  
pp. 89-94
Author(s):  
C.L. Yu ◽  
D.P. Gao ◽  
S.M. Chai ◽  
Q. Liu ◽  
H. Shi ◽  
...  

Frenkel's liquid-phase sintering mechanism has essential influence on the sintering of materials, however, by which only the initial 10% during isothermal sintering can be well explained. To overcome this shortage, Nikolic et al. introduced a mathematical model of shrinkage vs. sintering time concerning the activated volume evolution. This article compares the model established by Nikolic et al. with that of the Frenkel's liquid-phase sintering mechanism. The model is verified reliable via training the height and diameter data of cordierite glass by Giess et al. and the first-order partial differential equation. It is verified that the higher the temperature, the more quickly the value of the first-order partial differential equation with time and the relative initial effective activated volume to that in the final equibrium state increases to zero, and the more reliable the model is.


Sign in / Sign up

Export Citation Format

Share Document