scholarly journals Gauss’s ternary form reduction and the $2$-Sylow subgroup

1971 ◽  
Vol 25 (116) ◽  
pp. 837-837
Author(s):  
Daniel Shanks
Keyword(s):  
1971 ◽  
Vol 25 (116) ◽  
pp. 837 ◽  
Author(s):  
Daniel Shanks
Keyword(s):  

2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


Author(s):  
BJÖRN SCHUSTER

For any fixed prime p and any non-negative integer n there is a 2(pn − 1)-periodic generalized cohomology theory K(n)*, the nth Morava K-theory. Let G be a finite group and BG its classifying space. For some time now it has been conjectured that K(n)*(BG) is concentrated in even dimensions. Standard transfer arguments show that a finite group enjoys this property whenever its p-Sylow subgroup does, so one is reduced to verifying the conjecture for p-groups. It is easy to see that it holds for abelian groups, and it has been proved for some non-abelian groups as well, namely groups of order p3 ([7]) and certain wreath products ([3], [2]). In this note we consider finite (non-abelian) 2-groups with maximal normal cyclic subgroup, i.e. dihedral, semidihedral, quasidihedral and generalized quaternion groups of order a power of two.


2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].


1988 ◽  
Vol 114 (2) ◽  
pp. 268-285 ◽  
Author(s):  
Harvey I Blau
Keyword(s):  

Tempo ◽  
1939 ◽  
pp. 52-53
Author(s):  
Erwin Stein

Anton Webern's String Quartet, Op. 28 (1938), is in three movements, the structural elements of which are related to classical forms. The first movement is designed as an adagio (ternary form), the second is a kind of scherzo and trio en miniature, in which neither part contains a second section or development. The third movement is an elaborate scherzo form without trio.


1968 ◽  
Vol 20 ◽  
pp. 1256-1260 ◽  
Author(s):  
C. Hobby

We say that a finite group G has property N if the normalizer of every subgroup of G is normal in G. Such groups are nilpotent since every Sylow subgroup is normal (the normalizer of a Sylow subgroup is its own normalizer). Thus it is sufficient to study p-groups which have property N. Note that property N is inherited by subgroups and factor groups.


Sign in / Sign up

Export Citation Format

Share Document